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Dense granular flow down an inclined plane:
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The hydrodynamics of the dense granular flow of rough inelastic particles down an
inclined plane is analysed using constitutive relations derived from kinetic theory.
The basic equations are the momentum and energy conservation equations, and
the granular energy conservation equation contains a term which represents the
dissipation of energy due to inelastic collisions. A fundamental length scale in the
flow is the ‘conduction length’ δ = (d/(1 − en)

1/2), which is the length over which the
rate of conduction of energy is comparable to the rate of dissipation. Here, d is the
particle diameter and en is the normal coefficient of restitution. For a thick granular
layer with height h � δ, the flow in the bulk is analysed using an asymptotic analysis
in the small parameter δ/h. In the leading approximation, the rate of conduction of
energy is small compared to the rates of production and dissipation, and there is a
balance between the rate of production due to mean shear and the rate of dissipation
due to inelastic collisions. A direct consequence of this is that the volume fraction
in the bulk is a constant in the leading approximation. The first correction due to
the conduction of energy is determined using asymptotic analysis, and is found to
be O(δ/h)2 smaller than the leading-order volume fraction. The numerical value of
this correction is found to be negligible for systems of practical interest, resulting in
a lack of variation of volume fraction with height in the bulk.

The flow in the ‘conduction boundary layers’ of thickness comparable to the
conduction length at the bottom and top is analysed. Asymptotic analysis is used
to simplify the governing equations to a second-order differential equation in the
scaled cross-stream coordinate, and the resulting equation has the form of a diffusion
equation. However, depending on the parameters in the constitutive model, it is found
that the diffusion coefficient could be positive or negative. Domains in the parameter
space where the diffusion coefficients are positive and negative are identified, and
analytical solutions for the boundary layer equations, subject to appropriate boundary
conditions, are obtained when the diffusion coefficient is positive. There is no boundary
layer solution that matches the solution in the bulk for parameter regions where the
diffusion coefficient is negative, indicating that a steady solution does not exist. An
analytical result is derived showing that a boundary layer solution exists (diffusion
coefficient is positive) if, and only if, the numerical values of the viscometric coefficients
are such that volume fraction in the bulk decreases as the angle of inclination increases.
If the numerical values of the viscometric coefficients are such that the volume fraction
in the bulk increases as the angle of inclination increases, a boundary layer solution
does not exist.

The results are extended to dense flows in thin layers using asymptotic analysis. Use
is made of the fact that the pair distribution function is numerically large for dense
flows, and the inverse of the pair distribution function is used as a small parameter.
This approximation results in a nonlinear second-order differential equation for the
pair distribution function, which is solved subject to boundary conditions. For a
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dissipative base, it is found that a flowing solution exists only when the height is
larger than a critical value, whereas the temperature decreases to zero and the flow
stops when the height becomes smaller than this critical value. This is because the
dissipation at the base becomes a larger fraction of the total dissipation as the height
is decreased, and there is a minimum height below which the rate of production
due to shear is not sufficient to compensate for the rate of dissipation at the base.
The scaling of the minimum height with dissipation in the base, the bulk volume
fraction and the parameters in the constitutive relations are determined. From this,
the variation of the minimum height on the angle of inclination is obtained, and this
is found to be in qualitative agreement with previous experiments and simulations.

1. Introduction
The flow of a granular material down an inclined plane has been studied extensively

using computer simulations (Silbert et al. 2001, 2002; Mitarai & Nakanishi 2005)
which incorporate sophisticated particle interactions for relatively large systems with
heights of up to hundreds of particles. These provide detailed information about the
density, mean velocity and granular temperature (mean-square fluctuating velocity)
profiles. There are several remarkable features of the results of these simulations. The
purpose of this analysis is to determine whether the salient features of these flows can
be predicted by kinetic models, and the role of boundary interactions in determining
the parameter ranges for which a steady solution can be obtained. There have been
several studies of this flow, both phenomenological and kinetic-theory based (Louge &
Keast 2001; Bocquet, Errami & Lubensky 2002; Ertas & Halsey 2002; Louge 2003;
GDR MiDi 2004; Kumaran 2006a, b, c; Jenkins 2006) but a clear explanation for
several of these features is still lacking.

Some of the salient features examined in the present study are listed below, along
with attempts to provide a physical understanding of these features.

(a) The ‘angle of repose’ is defined as the angle at which the system transitions from
a flowing to a static state as the angle of inclination is decreased. In most constitutive
relations, a ‘yield stress’, which is independent of the rate of deformation, is used to
obtain cessation of flow when the angle is decreased below the angle of repose. The
total stress is defined as the sum of the yield stress, and a ‘kinetic’ stress which is
dependent on the rate of deformation. A yield stress is expected at the initiation of
flow when the material yields, and the value of the yield stress should be related to
the relative arrangement of particles in the static state. Evidence from simulations
(Silbert, Landry & Grest 2003) indicates that the angle of repose θrep is slightly lower
than the maximum angle of stability θmax , at which flow starts when the angle of
inclination is increased. For θ > θmax , the flow is continuous and the stress is described
well by the Bagnold law. For θrep < θ < θmax , the velocity profile first deviates from the
Bagnold profile, and then the flow becomes discontinuous avalanches when θ is very
close to θrep . As the height of the layer is increased beyond 40 particle diameters, the
difference θmax − θrep decreases to less than 1◦, and the range of angles of inclination
for which intermittent flow is observed is even smaller.

A ‘yield’ stress is not expected at the cessation of flow when the angle of inclination
is decreased. When it stops, the stresses do not diverge; the shear and normal stresses
are both linearly proportional to height, and they decrease continuously as the flow
stops. Therefore, the resistance of the material to flow has to increase rapidly at a
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finite angle of inclination, if the flow rate is to decrease sharply near cessation, and
this rapid increase must be obtained using the same constitutive law that was used
for the flowing state. This rapid increase has often been attributed to correlations of
various kinds in the flow. It should be noted that the close packed nature of the system
itself leads to correlations, since the movement of a particle at one point leads to
the movement of particles a few diameters away. However, this correlation is already
included in the theory via the divergence of the pair correlation function as the limit
of close packing is approached. Apart from this, there have been many postulates of
correlations decreasing over long distances (Ertas & Halsey 2002) or of clusters of
particles (Bonamy et al. 2002) which transmit stresses over distances large compared
to the particle diameter which could result in a yield stress even in the flowing state.
Contact dynamics simulations (Lois, Carlson & Lemaitre 2005, 2006) do seem to
show long chains of particles in contact extending over many particle diameters, but
the same is not observed in discrete-element simulations, which show that the average
coordination number (average number of particles in contact with a test particle)
decreases much below 1 for inclined plane flows of materials such as sand and
glass. Similarly, there have been experimental and simulation reports of correlations
on the surface of granular flows (Pouliquen 2004; Baran et al. 2006). But there is
no conclusive evidence for the presence of particle chains or eddies or coherent
structures, which is surprising considering that simulations provide comprehensive
information about these flows, at all length scales from the particle height to the layer
width.

The initial postulates of correlations over long distances (Ertas & Halsey 2002)
were motivated by the fact that there is a minimum height hstop required for the
material to flow, and the Froud number of a flow of thickness h has a stronger
correlation with (h/hstop) than with the height scaled by the particle diameter. It was
postulated that hstop is a measure of the length of the correlations in the flowing
state, and this length diverges as the minimum angle for flow of an infinite layer is
approached. However, the idea of diverging correlation lengths is in contradiction
with the assumption of local rheology. The rheological model will be valid only if the
thickness of the differential volume considered is larger than the correlation length;
if it is smaller than the correlation length, its surface would break though a chain
of particles or an eddy, and the stress response would depend on the dimensions of
the volume considered. When the correlation length diverges it should be comparable
to the system size at some point, and at this point the assumption of local rheology
is invalid. There have been studies (Jop, Forterre & Pouliquen 2006) which indicate
that the rheology is local, in which case there cannot be long-range correlations over
many particle diameters in these flows.

It was shown in an earlier study (Kumaran 2006a) that constitutive relations derived
from kinetic theory could predict both the cessation of flow at a finite angle and
the decrease in volume fraction with an increase in the angle of inclination, provided
the microscopic model was sufficiently realistic, and terms up to Burnett order were
retained in the constitutive relation. That study employed analytical calculations of
the viscometric coefficients up to Burnett order, and both numerical and asymptotic
evaluation of these coefficients for two different particle models. However, that study
was restricted to the prediction of volume fractions in the bulk of the flow where
the volume fraction is nearly a constant. A subsequent study (Jenkins 2006) used
a modification of the dissipation term in the energy balance equation in order to
obtain the same qualitative features, and used numerical solutions of the governing
equations to obtain the density and temperature profiles. Here, we use asymptotic
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analysis to examine how the results are altered due to the presence of the boundaries
at the top and bottom.

(b) The volume fraction of the particles is a constant in the bulk of the flow, the
granular temperature and all stress components are linear functions of height, and
the mean strain rate increases as the square root of the height from the bottom of the
layer. The volume fraction is found to be, within numerical accuracy, independent of
position in the flow (apart from thin layers at the top and bottom of thickness about
3–5 particle diameters where the volume fraction varies with position), independent
of the total height of the material, and dependent only on the angle of inclination
of the inclined plane. In addition, the volume fraction does not seem to depend
on the boundary conditions at the top and bottom surfaces, and the effects of the
boundaries seem to affect the flow only within layers of width 3–5 particle diameters
at the boundaries. In the earlier study (Kumaran 2006a), a small parameter was
identified, which was the ratio of the ‘conduction length’ (to be discussed later) and
the height of the flowing layer. It was shown that when this parameter is small, there
is a balance between the source of energy due to shear and the dissipation due to
inelastic collisions in the bulk. A direct consequence of this is that the volume fraction
is a constant in the bulk. To make quantitative predictions of the dependence of the
volume fraction on angle of inclination, the asymptotic analysis was carried out in
the close packing limit using the inverse of the pair distribution function as a small
parameter. In a subsequent study (Kumaran 2006b), the correction to the volume
fraction due to the conduction of energy was analysed using an expansion in the ratio
of the conduction length and layer height, and it was concluded that the correction
is very small for the parameters used in the simulations. The study of Jenkins (2006)
numerically predicted nearly constant density profiles in the bulk, with a modification
of the energy dissipation term due to long-range correlations. Here, we compare the
asymptotic solution for the correction to the density in the bulk with the complete
numerical solution of the momentum and energy equations.

(c) There are regions at the top and bottom where the volume fraction varies from
the constant value in the bulk. In the present analysis, we identify these regions as
‘conduction boundary layers’ at the top and bottom where the rate of conduction
of energy is comparable to the rates of production and dissipation. An asymptotic
analysis in the ratio of the conduction length and the layer height is used to reduce
the differential equation to a diffusion equation in the bottom layer, and analytical
solutions for the boundary layer profiles are obtained. A slightly more complicated
ordinary differential equation is obtained, and solved, for the top layer.

(d) Simulations (Silbert et al. 2001) also report that a steady flow is possible only
over a very limited range of parameters in the particle interaction model. For a linear
contact model, solutions are found only when the coefficient of restitution is less
than about 0.92, and in the presence of frictional interactions between the particles.
In the present study, we identify one of the limitations to the existence of solutions,
which is the existence of boundary layer solutions. In the simplified boundary layer
equations, solutions which decay into the bulk exist only when the diffusion coefficient
is positive. When the diffusion coefficient is negative, there are no boundary layer
solutions possible.

(e) An often-cited feature of the flow down an inclined plane is the hstop vs. angle
of inclination curve (Pouliquen 1999; Silbert et al. 2001). In experiments, after a
granular layer has flowed down an incline, there is a residual layer of thickness hstop

remaining on the inclined plane, and the thickness of this layer decreases as the angle
of inclination increases. The residual layer has been linked, previously, to the presence
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of correlations in the flow (Ertas & Halsey 2002), and the thickness of this layer has
been related to the correlation length.

In the present analysis, we relate the thickness of the static layer to the dissipation
in the base. In a thin flowing layer, there is a balance between the rate of shear
production and the rate of dissipation due to inelastic inter-particle collisions and
particle–base collisions. As the layer thickness becomes smaller, the fraction of the
dissipation due to particle–base collisions becomes larger, and there is a minimum
layer thickness below which the rate of shear production is insufficient to balance
the rate of dissipation, resulting in the collapse of the flowing layer. In order to
analyse this phenomenon for thin layers, we first reduce the governing equations to
a second-order nonlinear equation using an asymptotic expansion. The largeness of
the pair distribution function in dense flows is used to advantage in the analysis, and
the small parameter is the inverse of the pair distribution function.

The phenomenological ‘mixing length’ theories (Ertas & Halsey 2002; GDR MiDi
2004) attempt to obtain the ratio of the shear and normal stress as a function of the
strain rate scaled by the normal stress. In this sense, this is different from classical
rheology, which is an attempt to determine the different components of the stress as
a function of the strain rate. These studies do find universal relations for a given flow
type in the dense inertial regime for a layer of thickness 15 particle diameters or larger.
These studies also define a ‘coherence length’ or a ‘correlation length’ as (τ/(ργ̇ 2))1/2,
where τ is the shear stress, ρ is the mass density and γ̇ is the strain rate. It is found
that the correlation length could be large, as much as 20–40 particle diameters. This
is unexpected, because if there are correlations, one would not expect the rheology
to be the same for length scales less than the correlation length. The contradiction
arises from the fact that in dense collisional flows, momentum transport takes place
due to collisions, and the collision frequency diverges proportionally to the pair
correlation function as the random close packed limit is approached. The divergence
of the pair correlation function should also be incorporated into the definition of
the correlation length. If a correlation length is defined as (τ/(ρχγ̇ 2))1/2, where χ is
the pair correlation function, the correlation length will not be large compared to a
particle diameter, and the rheology would be expected to be local. In addition, these
studies also find that there is a difference in the rheology between the bulk and the
surface layers. In the present analysis, the characteristic length scale that accounts
for this difference is the conduction length. In the bulk where the distance from a
boundary is large compared to the conduction length, there is a balance between
the rates of production and dissipation of energy, and the stresses are proportional
to the square of the strain rate, from dimensional analysis. In boundary layers of
thickness comparable to the conduction length, energy conduction is important, and
the constitutive relation will depend on the strain rate as well as the perturbation to
the temperature caused by the boundaries.

There have been several studies which have used constitutive relations derived from
kinetic theory. In some studies, numerical solutions of the governing equations are
used to predict volume fraction and temperature profiles, with a set of boundary
conditions for the temperature and flux at the top and bottom surfaces. Some of
these studies (Bocquet et al. 2002; Jenkins 2006) have used viscometric coefficients
obtained from kinetic theories for inelastic particles. The objective of these studies was
to obtain profiles that appear similar to those in simulations, particularly the constant
volume fraction in the bulk. While Bocquet et al. (2002) modified the coefficient of
viscosity based on theories for the glass transition, Jenkins (2006) modifed the energy
dissipation term by postulating a correlation length in order to obtain profiles that
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look qualitatively similar to those observed in experiments. These numerical solutions
of the momentum and energy equations, in which the constitutive relations are derived
from kinetic theory, have played a very important role in advancing the understanding
of the physics of granular flows. However, they have to be analysed with caution
when the underlying equations are nonlinear. The absence of convergence to a final
solution from some initial guess does not imply that no solution exists. Conversely,
the numerical convergence to a solution to within a certain accuracy does not imply
that the solution is real, or that the same solution will be obtained when the accuracy
required is made more stringent. Nonlinear problems also have the difficulty that
there are multiple solutions. A difficulty specific to dense granular flows is that the
constitutive relations contain a pair distribution function, which diverges rapidly as
the limit of close packing is approached. Small variations in the volume fraction
lead to large variations in the pair distribution function, thus making numerical
convergence difficult.

There have been studies (Jenkins & Askari 1999; Louge & Keast 2001; Louge 2003)
which have attempted to separate the flow into a bulk flow and boundary layers,
and then solve for these separately. The balance equations in the different regions are
different, and different criteria are used to patch the solutions at pre-defined locations.
While the separation into different regions is carried out on the basis of some physical
approximations motivated by observations, these solutions cannot be strictly classified
as matched asymptotic expansions. In matched asymptotic expansions, the governing
equations are the same in different regions, but are approximated in different ways
to obtain the solutions in the different regions. These approximate solutions are then
matched to obtain a composite solution. Another drawback of the aforementioned
boundary layer theories is that the equation for the fluctuating velocity (square root of
temperature) in the boundary layers is a linear equation. For these types of solutions,
a matching procedure cannot be used because the solution either decreases to zero or
diverges when there is a transition from the boundary layer to the bulk. This problem
is overcome by Louge (2003) and Jenkins & Askari (1999) by patching solutions at
specified locations in the domain. The disadvantage of this procedure is that it results
in the solution being dependent on where the patching is done, and which function
or its derivatives are patched. In the physical system, there is no specified location
for the transition from the boundary layer to the bulk flow; rather, the solutions in
the two regions should match in the intermediate region where, simultaneously, the
inner coordinate goes to infinity and the outer coordinate goes to zero. Here, we
show that the boundary layer equation for the square root of the temperature
is a nonlinear equation, and this permits us to obtain a matched asymptotic
solution.

The goal of the present analysis is to specify a simple set of equations which is valid
throughout the flow, and then to use asymptotic techniques to simplify the equations
in the bulk and in the boundary layers. We use the analytical solutions, as well as
numerical solutions of the simplified equations, to obtain a better understanding of
the qualitative features of the flow down an inclined plane. Though the viscometric
coefficients for the rough particle model are used for quantitative estimates of the
field variables, the emphasis is on the forms of the equations obtained as a function of
parameters that can be evaluated for any particle model. It should be emphasized that
the numerical results obtained here will not be comparable to those in experiments and
simulations, just as the stress obtained from one model fluid cannot be quantitatively
compared with experiments on another fluid with different viscosity. However, if
the form of the constitutive equations is correct, then the functional forms of the



Dense granular flow down an inclined plane 127

dynamical variables obtained from the theory will be in agreement with those observed
in simulations and experiments.

One of the motivations for using matched asymptotic analysis is the observation
in simulations that the temperature boundary condition at the bottom affects the
dynamical fields only in a thin layer at the bottom, but not in the bulk. This is similar
to the situation that existed at the beginning of the last century (Anderson 2005),
with respect to the effect of solid surfaces on the velocity fields in high-Reynolds-
number flows of Newtonian fluids. It was first shown by Prandtl (Anderson 2005)
that the effects of boundaries are confined to thin regions near the surface where
viscous effects are important, unless there is boundary layer separation in the flow
past bluff bodies. This study also used, for the first time, the technique of matched
asymptotic expansions to match the boundary layer and outer flow solutions. Here,
we suggest that a similar situation occurs for the temperature field in a granular
flow, because energy is not a conserved variable. The asymptotic analysis provides
some insight which would otherwise be difficult to obtain from numerical solutions.
For example, it is shown analytically that a boundary layer solution exists only for
some values of the viscometric coefficients, and it exists only if the volume fraction
decreases as the angle of inclination increases in the bulk. Such a definitive result
would not be obtained by carrying out computations over large swathes of parameter
space.

One of the important results of simulations (Silbert et al. 2001) is that the granular
flow down an inclined plane satisfies the Bagnold law, which states that the stress
is proportional to the square of the strain rate. This observation is significant. The
Bagnold law is a dimensional necessity if the only relevant time scale is the inverse
of the strain rate, and the dynamics is not affected by any material time scales, such
as the period of the inter-particle interactions. Note that the duration of an inter-
particle interaction cannot significantly exceed the strain rate, because the particles
are convected past each other over a time period comparable to the inverse of the
strain rate. The constitutive relation for the stress assumes different forms in different
regimes, depending on the parameter γ̇ τc, which is the ratio of the time of contact
τc and the flow time, which is the inverse of the strain rate γ̇ . In the quasi-static
regime, γ̇ τc ∼ 1, the stresses are found to be independent of the strain rate, because
the transmission of stress is due to contact forces between particles. For a dilute
granular flow, interactions can be modelled as instantaneous collisions for γ̇ τc � 1.
However, for dense flows, the collision frequency increases proportionally to the pair
distribution function at contact χ , and the period of an interaction is small compared
to the time between interactions for γ̇ τcχ � 1. In this limit, the stress is not dependent
on the period of a collision, and from dimensional analysis it can be inferred that
the stress is proportional to the square of the strain rate (Bagnold law). As the
strain rate is increased from the quasi-static regime, there is a gradual transition from
the frictional rate-independent stress law to the Bagnold law. Simulations using the
discrete element method (DEM) (Silbert et al. 2001), where the particle interactions
are modelled using a spring–dashpot model, indicate that the Bagnold law is valid
even when the average number of contacts per particle is larger than 1, and Bagnold
coefficients do not change very much as τc is reduced and the system transitions to a
binary contact regime. More recent DEM simulations of Reddy and Kumaran (2007)
have shown that the average coordination number in a dense flow decreases rapidly
with an increase in the spring constant of the particles, and the average coordination
number is smaller than 1 for spring constants appropriate for real materials such
as sand and glass beads (the simulations of Silbert et al. 2001 were performed with
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spring constant about four orders of magnitude smaller than for sand or glass spheres
in order to reduce computational time). In addition, even though there are multiple
contacts at low spring constants, the force on the particle is dominated by the force
in one contact, which is larger in magnitude than the forces in all other contacts.
Silbert et al. (2007) studied the contact lifetime distributions of dense granular
flows using the DEM, and found that the dominant mode of interaction is brief
binary collisions, rather than a large number of long-lived contacts. This indicates
that the binary collision approximation is, in fact, a good approximation for dense
granular flows. It should, however, be noted that the Bagnold law is valid only in the
bulk, where there is a balance between the rates of production and dissipation
of energy. Conduction of energy is significant in boundary layers of thickness
comparable to the conduction length at the boundaries, where the Bagnold law is not
valid.

Kinetic theories for granular materials exploit the analogy between the motion
of discrete particles in the granular material and the motion of molecules in a
molecular gas. There have been many derivations of constitutive relations for granular
materials. These include approximate approaches that modified the Navier–Stokes
equations by adding a dissipation term due to inelastic collisions in the energy equation
(Savage & Jeffrey 1981; Jenkins & Savage 1983; Lun et al. 1984; Jenkins & Richman
1985; Kumaran 1998), as well as asymptotic approaches that used expansions in
the inelasticity and the Knudsen number (Sela, Goldhirsch & Noskowicz 1996;
Sela & Goldhirsch 1998; Kumaran 2004, 2006a). The important difference between
a molecular gas and the granular flow of inelastic particles is that energy is not
a conserved variable in a granular flow, since energy is dissipated in inter-particle
collisions. The details of the constitutive relations used here are provided in the next
section.

It is usually assumed that these theories are applicable only in the dilute limit, where
the mean free path is large compared to the particle diameter, and the assumptions
of molecular chaos are valid. However, as noted earlier, the simulations (Silbert et al.
2001) have shown that the Bagnold law for the stress tensor, which is a consequence
of the kinetic theory calculation, applies even for dense granular flows with volume
fraction ranging from 0.55 to about 0.58. In addition, it is known (Mitarai & Nakanishi
2005; Kumaran 2006a, b) that many of the features of the flow can be predicted using
kinetic theory. If the rate of conduction of energy is neglected in the energy balance
equation, kinetic theory predicts that the density is independent of height in the bulk
of the flow. One of the drawbacks of constitutive relations derived earlier for granular
flows (Savage & Jeffrey 1981; Jenkins & Richman 1985) was that these predicted
that the density in the flow increases as the angle of inclination is increased, which is
unphysical, because one would expect the density to decrease and the layer to swell
as the angle of inclination is increased. A recent theory (Jenkins 2006) attempted
to overcome this problem by postulating the presence of a ‘correlation length’ for
the energy dissipation rate. This was motivated by the study Mitarai & Nakanishi
(2005) which showed that the dissipation rate in two-dimensional simulations is lower
than the kinetic theory predictions, and also based on similar results from contact
dynamics studies (Lois et al. 2005, 2006).

The kinetic theory approach for gases is valid only in the dilute limit, owing
to the molecular chaos approximation that is made while calculating the collision
integral. For dense gases, the Enskog approximation is used, where the two-particle
velocity distribution function is written as the product of the single-particle velocity
distribution function and the equilibrium pair correlation function. It is known that



Dense granular flow down an inclined plane 129

the molecular chaos approximation breaks down in molecular fluids owing to the
presence of correlations in the velocities of colliding particles. In order to incorporate
collisions, it is necessary to solve the ‘ring kinetic equation’, where the three-particle
distribution function is expressed in terms of the two-particle distribution functions.
The effect of correlations has been calculated for molecular gases (Ernst et al. 1978),
and it has been shown that the inclusion of correlations at the three-particle level
leads to a divergence in the viscosity in two dimensions, and a divergence in the
Burnett coefficient in three dimensions. If the shear stress is expanded as a function
of the strain rate γ̇ for a linear shear flow, the leading (Navier–Stokes) term is
proportional to γ̇ , while the next higher ‘Burnett’ term is proportional to γ̇ 2. When
the number density increases, there is a contribution to the stress due to correlations
in the particle positions prior to collision (Ernst et al. 1978) which are incorporated
in the ‘ring kinetic equation’. The leading correction to the stress due to correlated
collisions is proportional to |γ̇ |3/2, which is non-analytic in the limit of zero strain
rate, resulting in the divergence of the Burnett coefficients.

It turns out that correlations do not cause divergence in the transport coefficients
for granular flows (Kumaran 2006c), because the natures of the hydrodynamic modes
in granular flows are very different. In molecular fluids, there are five conserved
(slow) modes: the mass, three components of the momentum and energy. Of these,
there are three transverse modes (energy and two transverse components of the
momentum) which are diffusive, and have a real decay rate proportional to k2 in
the limit k → 0, where k is the wavenumber. The other two longitudinal modes
(density and longitudinal momentum) are propagating, for which the decay rate has
an imaginary component proportional to k and a real component proportional to
k2. It turns out that the hydrodynamic modes for a sheared granular flow are very
different, because energy is not a conserved variable, and there are only four slow
modes. It has been shown (Kumaran 2004) that the decay rates of these modes are
proportional to k2/3 in the limit k → 0. Using these hydrodynamic modes, a ring
kinetic calculation (Kumaran 2006c) for a granular fluid has shown that there are no
divergences in the viscosity and Burnett coefficients for a sheared granular flow in
three dimensions. Thus, the regular Enskog expansion is valid for a dense granular
flow, provided the distortion of the pair correlation function due to the flow is taken
into account.

In the present analysis, we determine the effect of conduction on the density profile
in the bulk of a steady granular flow down an inclined plane, as well as in the
boundary layers. In the bulk, we use asymptotic analysis to determine the corrections
to the density and temperature profiles due to the conduction term in the energy
equation, and show that the corrections are small. This provides an explanation
for the remarkable lack of variation of density observed in simulations. In the
boundary layers at the top and bottom, where the conduction term in the energy
balance equation is comparable to the source and dissipation terms, we determine
the conditions under which boundary layer solutions exist. Further, we proceed to
obtain analytical expressions for the temperature field in the limit where the pair
correlation function is large compared to 1, using an expansion in the inverse of the
pair distribution function. Asymptotic matching is then used to obtain a solution
which is valid both in the bulk and in the two boundary layers. Finally, a nonlinear
equation is derived for the temperature, which is valid when the pair distribution
function is large compared to 1. The solution of this equation for thin layers is
examined, in order to determine the dependence of the minimum height required for
flow on the angle of inclination.
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2. Constitutive relations
The analysis is carried out for two of the three particle models that were previously

studied (Kumaran 2006a). In the case of ‘smooth nearly elastic particles’ the relative
velocity of the particles along the line joining their centres after collision is −en

times the relative velocity before collision, while the relative velocity perpendicular to
the line joining the centres is unchanged in the collision. The analysis of Kumaran
(2006a) showed that realistic results, such as the decrease in the volume fraction with
an increase in the angle of inclination, are not obtained for the smooth nearly elastic
particle model, and so we do not use this model. Here, quantitative comparisons
are made for the ‘rough nearly elastic’ particle model and the ‘partially rough nearly
elastic’ particle model. In the case of rough nearly elastic particles, the particle rotation
is also incorporated in the description, and the relative velocity of the particles in
the direction of the line joining their centres is −en times the relative velocity before
collision, while the relative velocity perpendicular to the line joining their centres
after collision is −et times the relative velocity before collision. The normal coefficient
of restitution en varies between 0 and 1; en =1 corresponds to perfectly elastic
collisions, while en = 0 corresponds to perfectly inelastic collisions. The tangential
coefficient of restitution et varies between −1 and +1: et = −1 corresponds to smooth
particles where there is no change in the relative velocity after collision, while et = 1
corresponds to perfectly rough particles where the relative velocity perpendicular to
the line joining their centres is reversed after the collision. Energy is conserved for
both et = +1 and et = −1, and it is convenient to carry out an asymptotic analysis
about the limit where energy is conserved. In the case of the partially rough particle
model, collisions are considered to be smooth if the angle between the relative velocity
vector and the line joining their centres is greater than a ‘roughness angle’ θr , and
considered to be rough otherwise.

The basic equation used is the inelastic Enskog equation, and the details of the
derivation are discussed in Kumaran (2004, 2006a). The velocity distribution function
is assumed to be an anisotropic Gaussian in both the linear and angular velocities.
An expansion is carried out about the elastic limit in the parameter ε = (1 − en)

1/2,
where en is the coefficient of restitution. In the case of rough particles, the ratio
(1 − et )/(1 − en) is considered to be O(1) in the expansion. The leading-order, O(ε)
and O(ε2), equations are solved to obtain the corresponding distribution functions.
The constitutive relations are then determined from the solutions for the distribution
function. The viscometric coefficients obtained in this manner are approximate due to
the assumption that the solution is an anisotropic Gaussian. This approximation is
equivalent to retaining the first term in the Sonine polynomial expansion for the first
and second corrections to the distribution function. For an elastic gas, the correction
to the viscosity due to the neglect of the next higher term is 1.2 %, and the correction
to the Burnett coefficients is about 6%.

We use a uniform approximation for the constitutive relation which is valid in the
limits where the length scale is large and small compared to the conduction length.
We discuss the constitutive relations appropriate for both these limits first, and then
the uniform approximation is provided. The mass of a particle is set equal to 1 in the
present calculation, so that all parameters are non-dimensionalized by particle mass,
and the temperature has units of the square of velocity. The conduction length is
determined by a balance between the rates of thermal diffusion and dissipation. The
divergence of the heat flux is ρDT (T/L2), where T is the temperature, L is the length
scale over which the temperature varies. The thermal diffusivity DT ∼ λT 1/2, where λ
is the microscopic scale (mean free path in a dilute gas and particle diameter in a
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dense gas). The rate of dissipation is proportional to (ρε2T 3/2/λ), since dissipation
of energy in a collision is proportional to (1 − en)T , and the collision frequency is
proportional to (T 1/2/λ). A balance between the rates of conduction and dissipation
is obtained only for L = Lc ∼ (λ/ε), where Lc is the conduction length.

If the macroscopic scale, which is the height of the flowing layer h in the present
system, is large compared to the conduction length, the rate of conduction of energy
is small compared to the rate of dissipation. The temperature is determined by a
local balance between the rates of production and dissipation, and the energy balance
reduces to

2μSijSji − D = 0 (2.1)

where μ is the viscosity, Sij is the symmetric part of the rate of deformation tensor
Gij , and D is the rate of dissipation of energy. The stress is expressed in terms of the
symmetric part Sij , the antisymmetric part Aij and the isotropic part of the rate of
deformation tensor Gii , as well as in terms of the temperature gradients. The most
general expression for the stress obtained using the leading-order first and second
corrections to the distribution function is (Chapman & Cowling 1970)

σij = −p(φ, Sij , Gii)δij + 2μ(φ, SijGii)Sij + μb(φ, Sij , Gii)δijGkk

+ ASS SikSkj + ASGSijGkk + ASAS (SikAkj + SjkAki)

+ AAAAikAkj + ASAA(AikSkj − SikAkj )
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. (2.2)

Note that the mass of the particle has been set equal to 1 without loss of generality,
and from dimensional analysis, all the Burnett coefficients above have dimensions of
inverse length. In (2.2) we retain the pressure and the viscous terms, and the Burnett
terms proportional to A and B, and neglect all other terms, for the following reason.
The Burnett terms proportional to A and B are proportional to the square of the
strain rate, γ̇ 2. The terms proportional to C to F are all proportional to (T/h2),
where h is the macroscopic scale. The temperature and strain rate can be compared
by examining the energy balance equation (2.1), in which the viscosity is proportional
to (T 1/2/d2), and the rate of dissipation of energy per unit volume is proportional
to (ρε2T 3/2/λ). For a dense flow, ρ ∼ (1/d3), and λ∼ d , so the temperature scales
as T ∼ (γ̇ d/ε)2 ∼ (Lcγ̇ )2. This can be used to compare the terms proportional to the
square of the strain rate and the temperature gradient in (2.2). The terms proportional
to the strain rate scale as γ̇ 2, while those proportional to the second spatial derivative
of the temperature and pressure scale as (γ̇ Lc/h)2, where h, the height of the flowing
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layer, is the macroscopic length scale in the present problem. For (Lc/h) � 1, the
terms proportional to the second derivative of the temperature can be neglected
compared to the terms proportional to the square of the strain rate. Therefore, we
retain the terms proportional to A and B in (2.2), and neglect all other terms.

The reasons the terms proportional to A and B are retained here are twofold.
First, it has been shown (Kumaran 2004) that the decay rate of the hydrodynamic
modes in a uniformly sheared granular flow depends on the coefficients A and B in
the long wave limit. In the present system, the terms proportional to A and B are
necessary to capture the normal stress differences. It has been observed in simulations
(Silbert et al. 2001) that the first normal stress is close to zero in these flows, but
the second normal stress is significant. We examine whether the predictions are in
agreement with the observations by retaining the normal stress terms. It should be
noted that the constitutive relation (2.2) was derived assuming a balance between the
rates of production and dissipation of energy (equation (2.1)), and so the constitutive
relation for the heat flux cannot be derived in a similar manner.

In the limit where the conduction length is comparable to the macroscopic length
scale, Lc ∼ L, the rate of dissipation is small compared to the rate of conduction. The
energy balance equation is of the form

∂

∂xi

(
K

∂T

∂xi

)
+ 2μSikSki − D = 0. (2.3)

The constitutive relation for the heat flux was derived using the usual expansion in
the gradients of the temperature (Chapman & Cowling 1970). Here, we have retained
the term proportional to the temperature gradient in the equation for the heat flux.
For inelastic fluids, there is an additional term proportional to the density gradient
in the equation for the heat flux (Sela & Goldhirsch 1998). The contribution of this
term to the heat flux turns out to be small in the present case, because the density is
nearly a constant in a dense flow, and so it is not included here. In the constitutive
relation for the stress, the temperature still scales as (γ̇ Lc)

2, but the length scale for
the gradients is Lc instead of the macroscopic length h. In this case, it can easily be
seen that the pressure p ∼ ρT ∼ ((γ̇ Lc)

2/d3), μSij ∼ (γ̇ 2Lc/d
2), while all the Burnett

terms are proportional to (γ̇ 2/d). Therefore, each successive term in the expansion is
factor (d/Lc) smaller than the previous term, and we use the usual expression for the
stress tensor which includes just the pressure and viscous terms:

σij = −pδij + 2μSij + μbδijGkk . (2.4)

It should be noted that the divergence of the heat flux in the energy equation is
small in comparison to the rates of production and dissipation in the bulk of the
flow, where the Burnett terms in the equations for the stress are included in order
to capture the normal stress differences. Therefore, it is not necessary to include
the Burnett terms for the heat flux in this region. The divergence of the heat flux
is included in the boundary layers at the top and bottom, but the expansion in
these regions is truncated at the Navier–Stokes order, for reasons mentioned above
(2.4). As a uniform approximation valid in both regimes, (2.3) is used for the heat
conduction equation, even though the rate of conduction is small compared to the
rates of production and dissipation in the bulk of the flow for h � L. In the equation
for the stress (2.4), the pressure and viscous terms, as well as the terms proportional
to A and B are included, but the contribution due to these terms is small in the
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Rough Partially rough

pφ (6φ/π)(1 + 2(2 − ε2)φχ ) (6φ/π)(1 + 2(2 − ε2)φχ )

μφ (0.195/χ ) + 0.892φ + 3.112φ2χ (0.196/χ ) + 0.713φ + 2.464φ2χ

Dφ (144/π3/2)φ2χ (1 + at ) (144/π3/2)φ2χ (1 + at/4)

Kφ (1.014/χ ) + 5.015φ + 19.27φ2χ (0.719/χ ) + 3.781φ + 12.426φ2χ

Bφ (0.04094/χ ) + (0.00433/φχ 2) (0.09601/χ ) + (0.00292/χ 2φ)

−0.191φ − 1.05φ2χ −0.01752φ − 1.43367φ2χ

Table 1. Viscometric coefficients obtained from kinetic theory for rough and partially rough
nearly elastic spheres in three dimensions (Kumaran 2006a). Here, at = (1 − et )/(1 − en). In the
above relations, particle mass is set equal to 1.

conduction boundary layers. The expression used for the stress is

σij = −p(φ, Sij , Gii)δij + 2μ(φ, SijGii)Sij + μb(φ, Sij , Gii)δijGkk

+ ASS SikSkj + ASGSijGkk + ASAS (SikAkj + SjkAki )

+ AAAAikAkj + ASAA(AikSkj − SikAkj )

+ 1
3
δij

(
BSS SklSlk + BAAAklAlk + BGGG2

kk

)
. (2.5)

The pressure, viscosity and the coefficients A and B are found from an earlier
calculation (Kumaran 2006a). Not all of these coefficients are required for the present
calculation, since we are considering a uni-directional flow in which the isotropic part
of the rate of deformation tensor is zero. The coefficients used in the present analysis
are summarized in table 1.

The pair distribution function used here is of two types, the Carnahan–Starling
pair distribution function,

χ(φ) = (2 − φ)/(2(1 − φ)3), (2.6)

and the high-density pair distribution function due to Torquato (1995),

χ(φ) =
(2 − φf )

2(1 − φf )3
φc − φf

φc − φ
, (2.7)

where φc =0.64 and φf = 0.49. The Carnahan–Starling pair distribution function is
accurate at low and moderate densities, but does not show the expected divergence
as the random close packing limit is approached. The high-density pair distribution
is not accurate at low densities, but shows the expected divergence proportional to
(φc −φ)−1 as the close packing limit is approached, where φ is the volume fraction and
φc is the volume fraction at random close packing. Though the Carnahan–Starling
pair distribution function does not diverge at close packing and diverges only at the
unphysical value of φ = 1, we present some results for this pair distribution to show
that the velocity and temperature profiles are not sensitive to the nature of the pair
distribution function, so long as the pair distribution function is numerically large for
the flow under consideration.

3. Bulk flow
The granular material is composed of hard-sphere particles of diameter d flowing

down a plane inclined at an angle θ to the horizontal. A Cartesian coordinate
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Figure 1. Configuration and coordinate system.

system is used, where the velocity and velocity gradient are in the x- and y-directions
respectively, as shown in figure 1. It should be noted that throughout the analysis,
the mass of a particle is set equal to 1 for simplicity, so that the mass dimension is
scaled by the particle mass. The shear and normal stress balances are

(dσxy/dy) = −ρg sin (θ), (dσyy/dy) = ρg cos (θ). (3.1)

The ratio of the shear and normal stresses is a constant in the flow,

(σxy/σyy) = − tan (θ). (3.2)

The energy equation at steady state is

d

dy
K

dT

dy
+ μγ̇ 2 − D = 0, (3.3)

where K is the thermal conductivity, D is the rate of dissipation of energy, T is the
‘granular temperature’, μ is the viscosity and γ̇ is the strain rate, which are specified
a little later.

The expressions for the shear and normal stresses depend on the approximation
used for the stress tensor. In the Burnett approximation, the shear and normal stresses
are given by

σxy = μγ̇ , σyy = −p + Bγ̇ 2. (3.4)

In the Navier–Stokes approximation, the Burnett coefficient B is set equal to zero.
The results of an earlier study on the granular flow of three-dimensional spheres
(Kumaran 2006a) has shown that there is a significant change in the dependence of
density on the angle of inclination when the Burnett term is included in the stress
tensor. Consequently, we use the Burnett approximation for the normal stress in the
present analysis.

It is convenient to express the viscometric coefficients and the dissipation coefficients
as a product of two functions, one of which is a dimensionless function of volume
fraction, and the other a product of suitably chosen powers of the granular
temperature and particle diameter, the latter having the same dimensions as the
viscometric function under consideration. (Note that the granular temperature has
dimensions of the square of the velocity, since the mass is set equal to 1.) From
dimensional analysis, it can be inferred that pressure is proportional to (T/d3), μ and
K are proportional to (T 1/2/d2), and D is proportional to (ρ2T 3/2), where ρ is the
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number density, and therefore we write

p = pφ(T/d3), μ = μφ(φ)(T 1/2/d2),

B = Bφ(φ)(1/d), K = Kφ(φ)(T 1/2/d2), D = Dφ(φ)ε2(T 3/2/d6),

}
(3.5)

where the variables with subscript φ are dimensionless functions of the volume
fraction, and ε =(1 − en)

1/2 is the small parameter used in the expansion (Kumaran
2004, 2006a) to determine the constitutive relations, where en is the normal coefficient
of restitution. The parameter ε2 is written separately in the expression for the rate of
dissipation of energy in order to ensure that the rate of dissipation goes to zero in the
limit of elastic collisions. The strain rate can be expressed in terms of the temperature
using (3.4) for the stresses, and (3.2) for the ratio of the stresses,

tan (θ) =
μφ(γ̇ d/T 1/2)

pφ − Bφ(γ̇ d/T 1/2)2

=
μφG

pφ − BφG2
. (3.6)

Equation (3.6) is a quadratic equation which can be solved, for a fixed value of tan (θ),
to obtain the function G(φ, tan (θ)) = (γ̇ d/T 1/2).

It is convenient to scale the y-coordinate by the height of the flowing layer,
y∗ =(y/h), since this is the length scale for the variation of the potential energy of
the particles in the momentum balance equation in the y-direction,

1

h

d

dy∗

(
(pφ − BφG

2)T

d3

)
= ρg cos (θ) = (6/πd3)φg cos (θ). (3.7)

Equation (3.7) indicates that for the pressure to balance the weight per unit area
of O(gh), the temperature has to scale as gh in the flowing layer. When the energy
balance equation, (3.3), is expressed in terms of the scaled coordinate y∗, we find,

(δ/h)2
d

dy∗

(
KφT

1/2 dT

dy∗

)
= −

(
μφG(φ, tan (θ))2

ε2
− Dφ

)
T 3/2, (3.8)

where δ =(d/ε) is the ‘conduction length’ (Kumaran 2004, 2006a), and G(φ, tan (θ))
is defined in (3.6).

In (3.8), it is apparent that the parameter multiplying the conduction term on
the left-hand side is small if the height is large compared to the conduction length,
or h � δ. This condition is satisfied for the chute flows of Silbert et al. (2001). For
example, for h = 40d , the parameter (δ/h) varies from about 0.08 for en = 0.9 to
about 0.0353 for en =0.5. In this case, an asymptotic expansion can be employed
and the density and temperature can be expanded in the small parameter δ/h,
φ = φ(0) + (δ/h)φ(1) + (δ/h)2φ(2), with similar expansions for T and G. When these
expansions are inserted in the energy equation (3.8), the leading-order equation is

μ
(0)
φ (G(0))2

ε2
− D

(0)
φ = 0, (3.9)

where we use the notation �(0) = � (φ)|φ = φ(0) for the viscosity, thermal conductivity,
pressure and rate of dissipation of energy. Equation (3.9) can be solved to obtain the
function G(0) as a function of φ(0),

G(0) = ε(D(0)
φ /μ

(0)
φ )1/2. (3.10)
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This is inserted into the equation (3.6) for the ratio of the stresses, to obtain

ε
(
μ

(0)
φ D

(0)
φ

)1/2

p
(0)
φ −

(
B

(0)
φ ε2D

(0)
φ /μ

(0)
φ

) = tan (θ). (3.11)

In (3.11) the left-hand side is a function the density φ(0) which is, in general, a
function of y, whereas the right-hand side is independent of height. Therefore, the
equality in (3.11) can be valid at all values of y only if the leading solution for the
volume fraction φ(0) is independent of y. This density can be explicitly determined
as a function of angle θ from a knowledge of the functional forms of D

(0)
φ , μ

(0)
φ , Bφ

and p
(0)
φ , as was carried out in an earlier study (Kumaran 2006a). An expansion was

used in the dense limit, where the pair distribution function is large compared to 1
(χ (0) � 1), and the functions D

(0)
φ , p

(0)
φ , μ

(0)
φ , and B

(0)
φ were expanded in a series in the

inverse of the pair correlation function. The leading contributions to these functions
are proportional to χ , and so the forms of the expansion correct to O(χ−1) are
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.
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(3.12)

The above expressions can be obtained from table 1, by expressing φ in terms of
χ using (2.6) or (2.7) for the pair correlation function. When these expansions are
inserted into (3.11), and the left-hand side of (3.11) is expanded in a series in the
inverse of the pair correlation function, we obtain an expression of the form

tan (θc) +
C1

φ(0)χ (0)
+

C2(
φ(0)χ (0)

)2
= tan (θ) (3.13)

where C0, C1 and C2 are determined in terms of the coefficients in (3.12). Equation
(3.13) can be solved to obtain (φ(0)χ (0)) as a function of tan (θ), and the volume
fraction φ(0) can be determined from the pair distribution function χ (0). Once the
value of φ(0) is known, the leading-order temperature field can be determined from
the momentum balance equation,

T (0) =
6φ(0)gh(1 − y∗) cos (θ)

π(p(0)
φ − B

(0)
φ G(0)2)

. (3.14)

Here, we have used the condition that T (0) = 0 at the free surface y∗ = (y/h) = 1 in
order to fix the constant in (3.14). Note that it is not possible to apply boundary
conditions for the temperature field, since we have neglected the conduction of energy
in the leading approximation in (3.8), and converted the equation from a second-order
differential equation to a zeroth-order differential equation. The conduction term has
to be included in boundary layers at the top and bottom using a theory similar the
boundary layer theory for viscous flows, and the boundary layer equations are derived
in the next sections.

Next, we turn to the calculation of the higher-order corrections to the volume
fraction due to the gradient term on the left-hand side of (3.8). Since the
inhomogeneous term is O(δ/h)2, the first correction to the density φ(1) is identically
equal to zero. The second correction to the density is obtained by substituting the
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density and temperature expansion into (3.8). The left-hand side of this equation
contains only the leading solutions for the density and temperature profiles, while
the right-hand side contains terms due to the second corrections to the density and
temperature fields. Retaining terms correct to O(δ/h)2, we obtain

d

dy∗

(
K

(0)
φ T (0)1/2 dT (0)

dy∗

)
= −

(
μφG

2

ε2
− Dφ

)
T 3/2

∣∣∣∣
2

, (3.15)

where K
(0)
φ = Kφ(φ

(0)), and the subscript 2 refers to the O(δ/h)2 contribution to the
terms on the right. Since the density-dependent term in brackets on the right-hand
side of (3.15) is zero in the leading approximation, and the first corrections to φ and
T are zero, the O(δ/h)2 contribution on the right-hand side is given by(

μφG
2
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)
T 3/2
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2

=
d

dφ

(
μφG

2

ε2
− Dφ

)∣∣∣∣
φ=φ(0)

φ(2)T (0)3/2. (3.16)

Using (3.16) for the right-side of (3.15), and inserting the leading-order solution for
T (0), we obtain

φ(2) = −
K

(0)
φ

2(1 − y∗)2

(
d

dφ

(
μφG

2

ε2
− Dφ

)∣∣∣∣
φ=φ(0)

)−1

. (3.17)

To summarize, we have used an asymptotic analysis in the small parameter (δ/h)
to show that the volume fraction in the bulk of the flow is a constant in the leading
approximation, and the correction to the volume fraction is (δ/h)2φ(2), where φ(2) is
given in (3.17). The parameter (δ/h) was earlier estimated for h = 40d , for the smallest
values of h used in the simulations of Silbert et al. (2001) as varying between 0.08 for
en = 0.9 and 0.0353 for en = 0.5. Consequently, the correction to the volume fraction
is expected to vary between 0.0064φ(2) for en = 0.9 and 0.00125φ(2) for en = 0.5.

The numerical results for (φ(2)(1 − y∗)2) as a function of volume fraction are shown
in figure 2 for the rough nearly elastic particle models, and in figure 3 for the
partially rough inelastic particle model. The coefficients for the pressure, viscosity,
conductivity and Burnett coefficient from table 1 are used, and results are shown
for the Carnahan–Starling pair distribution (equation (2.6)) and the high-density pair
distribution (equation (2.7)). It is observed that (φ(2)(1−y∗)2) has a maximum value of
about 2 near close packing for rough nearly elastic particles. The value of φ(2) increases
at lower volume fractions and it diverges at a volume fraction close to 0.1 because
the denominator (last term on the right-hand side of (3.17)) passes through zero, but
such low volume fractions are not encountered in practical applications or in the
simulations (Silbert et al. 2001). This indicates that the variation in volume fraction
is, at most, about 1.2 % even for thin layers of thickness 40 particle diameters and
en = 0.9, for which (δ/h)2 = 0.0064, when the volume fraction is greater than about
0.3 in three dimensions, and the variation decreases as the collisions become more
inelastic. These variations may be difficult to observe in graphs of simulation results,
since they are smaller than the typical symbol size or error bar in the graph.

An example of the density profile predicted by the above analysis, for φ(0) = 0.60 and
for different coefficients of restitution, is shown for a layer with thickness 40 particle
diameters in figure 4. It is observed that the density profile is remarkably constant
between en = 0.5 and en = 0.9, though this solution is not valid within boundary layers
of thickness about 5 particle diameters at the top and bottom as noted earlier. The
density profile does show some variation for en = 0.98 because the parameter (δ/h)
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Figure 2. The parameter (φ(2)(1 − (y/h))2) (equation (3.17)) as a function of φ(0) for the
rough nearly elastic model with at = 0 (�), at =0.2 (	), at =1.0 (∇), at =5.0 (�). The broken
lines show the results when the pair distribution function is given by the Carnahan–Starling
equation of state (equation (2.6)), and the solid lines show the results when the pair distribution
function is given by the high-density equation of state (equation (2.7)).
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Figure 3. As figure 2 but for the partially rough nearly elastic model.

is 0.177, and is no longer small, but even this variation is small in the centre of the
layer. The simulations of Silbert et al. (2001) show an example of a profile at en = 0.98
which looks much flatter than figure 2, but it should be noted that Silbert et al. had
a non-zero friction coefficient, which would result in a larger energy dissipation than
that for frictionless particles with en = 0.98. Thus, the present analysis captures the
remarkable lack of observable variation of the volume fraction with height, and with
angle of inclination near close packing.

It is observed, in figures 2 and 3, that φ(2) diverges as the coefficient of restitution
is decreased, because the derivative with respect to volume fraction in (3.17) passes
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Figure 4. Volume fraction φ as a function of the ratio of the height and particle diameter,
(y/d), for the rough nearly elastic model (solid line); the partially rough nearly elastic model
(dashed line) with at = 1.0, for h = 40d, en = 0.5, θ = 22.00o (�), h = 40d, en = 0.7, θ = 21.05o (�),
h = 40d, en =0.9, θ = 19.23o (�) and h = 40d, en = 0.98, θ = 11.01o (�). The pair distribution
function was assumed to be the high-density equation of state (equation (2.7)) in all cases.

through zero. This suggests that for the models used here, there is a range of
coefficients of restitution where a steady flow is not possible. The absence of a
solution for certain parameter values was also noted by Louge (2003). This is the
result of the fact that at low volume fractions, the derivative with respect to volume
fraction in (3.17) is negative, whereas it becomes positive at high volume fraction
for the models considered here, and passes through zero at an intermediate value
of the volume fraction. The divergence could be avoided if the next higher term
in the expansion, which is proportional to the second derivative of the difference
between production and dissipation with respect to volume fraction, were included
in (3.16) in the volume fraction range where the first derivative passes through zero.
However, it should be noted that the divergence occurs at a relatively small value of
the volume fraction, in the range φ(0) = 0.2 − 0.3, which is not relevant for the dense
flows considered here. Therefore, we do not refine the theory further.

4. Boundary layer solution at the bottom surface
The leading-order solution (3.14) cannot satisfy the boundary conditions at the

top and bottom surfaces, because the rate of conduction of energy is neglected in
comparison to the rate of production and dissipation, thereby converting the second-
order differential equation to an algebraic equation. Within distances comparable to
the conduction length from the boundaries, it is necessary to rescale the y-coordinate
by the conduction length δ = (d/ε). The ‘inner’ coordinate near the bottom surface is
defined as y† =(y/δ). In this and the following sections, we refer to the leading-order
volume fraction in the bulk flow as φo, and use the symbols φ and T for the volume
fraction and temperature in the boundary layer. The y momentum equation and the
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energy equation can be written in terms of the inner coordinate y† as

d((pφ − BφG)T )

dy† = −6φgδ cos (θ)

π
, (4.1)

d

dy† KφT
1/2 dT

dy† = −T 3/2

(
μφG(φ, tan (θ))2

ε2
− Dφ

)
, (4.2)

where pφ , Kφ , μφ and Dφ are defined in (3.5). In the momentum conservation equation
(4.1), the left-hand side scales as (gh), since the temperature is proportional to (gh),
while the right-hand side scales as (gδ). Therefore, in an asymptotic expansion in the
parameter (δ/h), the right-hand side of (4.1) can be neglected in comparison to the
left-hand side. The leading-order momentum equation is given by

d((pφ − BφG
2)T )

dy† = 0. (4.3)

If the leading-order equation were solved in a naive manner, the solution would turn
out to be

T =
φogh cos (θ)

(pφ − BφG2)
(4.4)

where the constant of integration on the right-hand side is determined from the
pressure in the limit y → 0 in the outer solution. However, it should be noted that
this solution does not match with the outer solution (3.14) in the limit y† → ∞ and
y∗ → 0, and we shall use the matching conditions to modify the solution (4.4) a little
later.

The spatial evolution equation for the volume fraction is obtained by inserting the
expressions for the temperature (4.4) into the energy conservation equation (4.2),

d

dy†

(
− (pφ − BφG

2)′Kφ

(pφ − BφG2)5/2

dφ

dy†

)
= − 1

(pφ − BφG2)3/2

(
μφG(φ, tan (θ))2

ε2
− Dφ

)
(4.5)

where primes denote derivatives with respect to φ. Equation (4.5) can be simplified
to obtain a second-order differential equation for φ,

d2φ

dy†2
+ E(φ)

(
dφ

dy†

)2

= F (φ) (4.6)

where

E(φ) =
(pφ − BφG

2)5/2

(pφ − BφG2)′Kφ

(
(pφ − BφG

2)′Kφ

(pφ − BφG2)5/2

)′

,

F (φ) =
pφ − BφG

2

(pφ − BφG2)′Kφ

(
μφG(φ, tan (θ))2

ε2
− Dφ

)
.

⎫⎪⎪⎬
⎪⎪⎭ (4.7)

Equation (4.6) is a nonlinear equation, which has to be solved for a specific model
for the pressure, viscosity and thermal conductivity, in order to obtain the volume
fraction as a function of height in the boundary layer. It is also a second-order
differential equation in y†, which requires two boundary conditions. One of these is
the matching condition in the limit y† → ∞,

φ → φo for y† → ∞. (4.8)

The second is the condition for either the temperature or the flux at the base.
The Jenkins & Richman (1985) conditions at the bottom surface balance the heat
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flux towards the base J with the rate of dissipation of energy D. Since the heat
flux, −K(dT/dz), where K is T 1/2 times a function of volume fraction, and D is
proportional to T 3/2, the Jenkins & Richman conditions have the form

dT

dy
= βT (4.9)

where β is a positive function of the volume fraction at the base when the base
is dissipative. If there is an energizing base which supplies energy to the flow, the
function β is negative, and the temperature decreases with an increase in height
from the surface. It is also possible to consider other boundary conditions, such as a
constant temperature or a constant heat flux at the surface. However, before imposing
boundary conditions, we first examine whether solutions exist for (4.6) in the limit
y† → ∞.

Equation (4.6) is most conveniently expressed in terms of the departure from the
volume fraction φo in the outer layer,

d2(φ − φo)

dy†2
+ E(φ)

(
d(φ − φo)

dy†

)2

= F (φ). (4.10)

For φ → φo, (4.10) can be linearized in the difference (φ − φo) about φ = φo. It should
be noted that F (φo) = 0 for the outer solution from (3.9), and therefore F (φ) can be
approximated as (dF (φ)/dφ)|φ = φo

(φ − φo). The resulting linear equation is

d2(φ − φo)

dy†2
= H (φo)(φ − φo) (4.11)

where

H (φo) =
dF (φ)

dφ

∣∣∣∣
φ=φo

. (4.12)

The solution of this equation, consistent with the requirement that the perturbation
to the volume fraction should be finite for y† → ∞, is

φ = φo + C exp (−
√

H (φo)y
†) (4.13)

where C is a constant to be determined from the boundary conditions. Clearly,
exponentially decaying solutions which satisfy the matching condition for y† → ∞
exist only if H (φo) is positive. If H (φo) is negative, there are no solutions that satisfy
the boundary condition for y† → ∞. Thus, a boundary layer solution for the energy
field requires that H (φ) is positive at φ = φo.

The function H (φo) is shown as a function of the coefficient of restitution for
different volume fractions in figure 5 for the rough particle model, and in figure 6 for
the partially rough particle model. The function H (φo) has some common features
for both the rough and partially rough particle models. It is observed that H (φo)
is negative when the coefficient of restitution is very close to 1, indicating that
a boundary layer solution cannot be obtained in the limit of elastic inter-particle
collisions. However, H (φo) changes sign and assumes positive values as the coefficient
of restitution decreases in all cases. This implies that an exponentially decreasing
boundary layer solution exists when the coefficient of restitution is less than a
maximum value for both the rough and partially rough particle models, and a
boundary layer solution does not exist when the coefficient of restitution increases
beyond this value. Figures 7 and 8 show the contours in the φo − en plane separating
regions where a boundary layer solution does and does not exist. A boundary layer
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Figure 5. The function H (φo) (equation (4.12)) as a function of en for the rough particle model
with at = 0, and φo = 0.64 (�), φo = 0.6 (�), φo = 0.5 (+), at = 0.3 (×). The solid lines show the
results when the pair distribution function is given by the Carnahan–Starling equation of state
(equation (2.6)), and the broken lines show the results when the pair distribution function is
given by the high-density equation of state (equation (2.7)).
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Figure 6. As figure 5 but for the partially rough particle model.

solution does exist for parameter values below the lines shown in figures 7 and
8. It is observed that the boundary layer solution exists over a much larger range
of coefficients of restitution for the partially rough particle model, and a relatively
smaller range for the rough particle model, for the forms of the pair correlation
function used here.

Thus, the above analysis indicates that a boundary layer solution does not exist
under all conditions, but only for specific parameter values. In particular, there is
a critical dependence on the variation of the parameter (μφG(φ, tan (θ))2/ε2 − Dφ)
with φ about φ = φo, and it is necessary to evaluate this parameter in order to assess
whether a boundary layer solution is possible or not. This is in contrast to viscous
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Figure 7. Contours in the φo − en plane where H (φo) = 0 for the rough particle model for
at =0 (�), at = 0.2 (�), at = 1.0 (+), at = 5.0 (×). A boundary layer solution that decreases
exponentially into the bulk exists below the lines shown in the figure.
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Figure 8. As figure 7 but for the partially rough particle model.

boundary layer solutions in high-Reynolds-number fluids flows, for example, which
always exist. However, it is still necessary to solve a nonlinear equation, (4.10), in
order to obtain the actual volume fraction and temperature profiles in the boundary
layer. There are difficulties with existence and uniqueness due to the nonlinear nature
of the equation. There is an additional complication, which is the rapid variation of
the pair distribution function with volume fraction as the limit of close packing is
approached. In the following analysis, we attempt to get around this difficulty by using
the pair distribution function, rather than the volume fraction, as the fundamental
variable. For the purpose of calculation, we use the high-density pair distribution
function (2.7), and we invert this pair distribution function in order to express the
volume fraction in terms of the pair distribution function.
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For a dense granular flow, the pair distribution function is numerically large, and
an expansion can be used in the inverse of the pair distribution function, χ−1. The
leading-order terms in the expansion are retained to obtain an analytical solution
for the variation of the density with height. Since the functions pφ , μφ , Kφ and Dφ

diverge proportionally to χ in this limit, it is convenient to express the viscometric
parameters and the dissipation rate as

p = (pcT χ/d3), K = (KcT
1/2χ/d2), μ = (μcT

1/2χ/d2),

B = (Bcχ/D), D = (Dcε
2T 3/2χ/d4), G = Gc,

}
(4.14)

where Gc is obtained in terms of pc, μc, Bc and tan (θ) using (3.6). A similar truncation
is not sufficient for the inhomogeneous term on the right-hand side of (4.2), since it is
zero in the leading approximation in the high-density limit. It is convenient to rewrite
the right-hand side of (4.5) as

−T 3/2Dφ

(
μφG(φ, tan (θ))2

Dφε2
− 1

)
. (4.15)

The ratio (μφG(φ, tan (θ))2/Dφε
2) tends to a constant for χ � 1 in the close packing

limit, since μφ and Dφ are proportional to χ in this limit, while G(φ, tan (θ)) tends to
a constant. Therefore, (4.15) has the form

T 3/2Dφ

(
R′

c +
Rc

χ
− 1

)
(4.16)

correct to O(χ−1), where R′
c and Rc are constants. In addition, (μφG(φ, tan (θ))2/Dφε

2)
is identically equal to 1 for the outer solution φ =φo, or χ = χo, where χo is the pair
distribution function in the outer region. Therefore, (R′

c −1) = −(Rc/χo) in (4.16), and
the right-hand side of (4.5) is

T 3/2DcχRc

(
1

χ
− 1

χo

)
. (4.17)

A relation between the parameter Rc in (4.15) and (4.16), and the parameter
H (φo) in (4.12), can be obtained as follows. Note that the parameter Rc can also be
expressed as the negative of the derivative of (μφG(φ, tan (θ))2/Dφ) with respect to
χ−1, at χ = χo,

Rc = − d

dχ−1

(
μφG(φ, tan (θ))2

Dφ

)∣∣∣∣
χ=χo

= χ2 d

dχ

(
μφG(φ, tan (θ))2

Dφ

)∣∣∣∣
χ=χo

. (4.18)

The function H (φo) in (4.12) can be expressed as

H (φo) =
d

dφ

(
(pφ − BφG

2)Dφ

(pφ − BφG2)′Kφ

(
μφG(φ, tan (θ)2)

Dφε2
− 1

))∣∣∣∣
φ=φo

=
d

dχ

(
(pφ − BφG

2)Dφ

(pφ − BφG2)′Kφ

(
μφG(φ, tan (θ)2)

Dφε2
− 1

))
× dχ

dφ

∣∣∣∣
=φo

=
(pφ − BφG

2)Dφ

(pφ − BφG2)′Kφ

d

dχ

(
μφG(φ, tan (θ)2)

Dφε2
− 1

)
× dχ

dφ

∣∣∣∣
=φo

. (4.19)
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The final simplification in (4.19) can be made because ((μφG(φ, tan (θ))/Dφε
2)−1) = 0

at φ = φo. Therefore, H (φo) can be written in terms of Rc as

H (φo) =
Rc

χ2

(pφ − BφG
2)Dφ

(pφ − BφG2)′Kφ

dχ

dφ

∣∣∣∣
φ=φo

. (4.20)

In (4.20) note that (pφ − BφG
2) is the negative of the normal stress, which has to

be positive in the boundary layer in order to support the weight of material above.
In addition, the derivative of the normal stress with volume fraction should also be
positive for stability. Since all terms in (4.20) except Rc are positive, it follows that
H (φo) is positive if Rc is positive. Thus, the domains of positive H (φo) in figures 5
and 6 correspond to the domains of positive Rc.

With the simplifications for the viscometric parameters in (4.14), and the
simplification for the difference between rates of shear production and inelastic
dissipation in (4.17), the momentum and energy equations (4.3) and (4.5) can be
written as

T =
6φogh cos (θ)

π(pc − BcG2
c)χ

, (4.21)

d

dy† Kc

√
χ

d(χ)−1

dy† =
DcRc√

χ

(
1

χ
− 1

χo

)
. (4.22)

It is convenient to express (4.22) in terms of the dimensionless parameter
ψ = (χ/χo)

−1/2. Equation (4.22) then becomes

2
d2ψ

dy†2
=

RcDc

χoKc

(ψ3 − ψ). (4.23)

This equation can easily be solved, subject to the boundary condition (dψ/dy) → 0
and ψ → 1 in the limit y → ∞, to obtain

ψ =
1 − c exp (−αy†)

1 + c exp ((−αy†)
(4.24)

where α2 = (RcDc/2Kcχo), and c is the constant of integration to be determined from
the boundary conditions. The temperature can be easily determined using (4.4) and
(4.14), where χ =(χo/ψ

2), and ψ is given by (4.24),

T =
6φogh cos (θ)

π(pc − BcG2
c)χo

(
1 − c exp (−αy†)

1 + c exp (−αy†)

)2

. (4.25)

A uniform solution is obtained by asymptotic matching of (4.25), which is valid
in the boundary layer, with (3.14), which is valid in the bulk of the flow. In the
asymptotic matching procedure, the inner and outer solutions are added together,
and the common limiting value of the outer solution (in the limit y∗ → 0) and the
inner solution (in the limit y† → ∞) is subtracted, to obtain

T =
6φog cos (θ)

πpcχo

(
h

(
1 − c exp (−αy†)

1 + c exp (−αy†)

)2

− y

)
. (4.26)
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Next, we determine the constant c from the boundary conditions. The temperature
and the temperature gradient at y† = 0 are given by

T =
6φogh cos (θ)

(pc − BcG2
c)χo

(
1 − c

1 + c

)2

,

dT

dy
=

6φogh cos (θ)

π(pc − BcG2
c)χo

4α(1 − c)c

δ(1 + c)3
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.27)

With the above expressions for the temperature and temperature gradient, the Jenkins–
Richman boundary conditions reduce to the form

4αc

δ(1 − c2)
= β. (4.28)

Thus, the solution for the constant c is

c = −2α

δβ
±

√
4α†2 + δ2β2

δβ
. (4.29)

The positive or negative sign to be used in (4.29) can be inferred from (4.27) for the
temperature. This equation indicates that for c greater than +1 or c less than −1, the
temperature is either zero or infinity at some point in the boundary layer. Since this
is unphysical, it is necessary that c be bounded between −1 and +1. This requires
that the positive sign be used in (4.29) for β > 0, and the negative sign be used for
β < 0.

A brief digression is made in order to derive a significant relationship between the
existence of a boundary layer solution derived in the present section, and the existence
of a flow in which the volume fraction decreases as the angle of inclination decreases
as derived in an earlier study (Kumaran 2006a). The following theorem is proved:

Theorem 1. A boundary layer solution at the bottom boundary for the flow down an
inclined plane exists if and only if the volume fraction in the bulk decreases as the angle
of inclination is increased.

In Kumaran (2006a), the volume fraction was related to the angle of inclination
using (3.6), where G =(dγ̇ /T 1/2). For later convenience, we refer to the right-hand
side of (3.6) as P (φ, G):

P (φ, G) =
μφG

pφ − BφG2
. (4.30)

The parameter G, which provides the relation between the strain rate and the
temperature, was obtained from the balance between the rates of production and
dissipation of energy. It is convenient to work with the function Q(φ, G), which is
defined as the difference between the (ratio of the rates of production and dissipation)
and 1, which has to be zero,

Q(φ, G) =

(
μφG

2

Dφε2
− 1

)
= 0. (4.31)

Equation (4.31) is used to obtain G in terms of the volume fraction, and inserted into
(4.30), to obtain the angle of inclination as a function of volume fraction. In Kumaran
(2006a), a flow was considered to be physically realistic if the volume fraction decreases
as the angle of inclination increases. This requires that the derivative of P (φ, G) with
respect to φ at constant Q(φ) has to be negative. Therefore, the volume fraction
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decreases as the angle of inclination increases only for

∂P (φ, G)

∂φ

∣∣∣∣
Q(φ,G)=0

< 0. (4.32)

In the present boundary layer analysis, we showed that a boundary layer solution
exists only for

H (φ) =
(pφ − BφG

2)Dφ

(pφ − BφG2)′Kφ

d

dφ

(
μφG(φ, tan (θ)2)

Dφε2
− 1

)∣∣∣∣
φ

> 0. (4.33)

Note that H (φ) can be written in terms of the derivative of the function Q(φ, G) with
respect to φ,

H (φ) =
(pφ − BφG

2)Dφ

(pφ − BφG2)′Kφ

dQ

dφ

∣∣∣∣
P (G,φ)=tan (θ)

, (4.34)

and H (φ) is positive when (dQ/dφ)|P (G,φ) = tan (θ) is positive. Therefore, boundary layer
solutions exist only when

dQ

dφ

∣∣∣∣
P (G,φ)=tan (θ)

> 0. (4.35)

Next, (4.32) and (4.35) are compared, using the identity

dP

dQ

∣∣∣∣
φ

∂Q

∂φ

∣∣∣∣
P

= − dP

dφ

∣∣∣∣
Q

. (4.36)

The derivative (dQ/dP )|φ can be evaluated by first substituting for G in terms of Q

from (4.31), and then inserting this into (4.30),

dP

dQ

∣∣∣∣
φ

=
d

dQ

( √
μDφε2(Q + 1)

pφ − (BφDφε2(Q + 1)/μφ)

)∣∣∣∣∣
φ

=

√
μφDφε2

2
√

Q + 1

(
pφ + (BφDφε

2/μφ)(Q + 1)

(pφ − (BφDφε2/μφ)(Q + 1))2

)
. (4.37)

Since the above derivative is taken for a state where there is a balance between
production and dissipation in the bulk, Q(φ, G) in (4.31) is zero, and the derivative
(dP/dQ)|φ is always positive in (4.37). Therefore, (4.36) indicates that conditions
(4.32) and (4.35) are either satisfied simultaneously, or are violated simultaneously.
This proves the theorem that a boundary layer solution at the bottom surface for
the flow down an inclined plane exists if and only if the volume fraction in the bulk
decreases as the angle of inclination is increased.

It should be noted that the above result is derived for the existence of a solution,
and not for its stability; a more detailed stability analysis would be required to analyse
the stability about the base state. The result is general, in the sense that it is valid
for all models for which the bulk flow and the boundary layer are described by the
same constitutive relations for the stress and energy flux, and the same stress ratio
and energy balance conditions are used in the boundary layer and the bulk.
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5. Boundary layer solution at top surface
As the top surface is approached from below, there is a transition from a dense

collisional flow to a dilute regime in which the particle motion is ballistic. Simulations
show that there is a deviation from the linear temperature profile to a profile which
seems to approach a constant value, or shows an increase, as the top surface is
approached. In addition, the volume fraction decreases sharply from its constant
value near the top surface. In simulations, the length scale for the deviation of the
temperature from its linear form is larger than the length scale for the decrease
in the density. In this analysis, scaling arguments are used to show that the length
scale over which the density decreases is (δ/χo), which is much smaller than the
conduction length δ for temperature variations in the dense limit where χo � 1. We
use this separation of scales, along with asymptotic matching, in order to construct
a boundary layer theory for the evolution of the temperature and density at the
top surface. As in the previous section, two parameters are used in the asymptotic
analysis: the ratio of the conduction length and the height of the flowing layer, (δ/h),
which is small compared to 1, and the pair distribution function at contact in the
bulk, χo, which is large compared to 1. In the following analysis, we first assume
that the density decreases sharply over a distance small compared to that for the
temperature evolution from its linear value, and show at the end of this section that
the assumption is self-consistent.

In order to analyse the boundary layer, we choose the origin of the coordinate
system at the location where the density profile decreases sharply to zero, and choose
the coordinate Y = (h − y), so that Y is positive into the granular layer, as shown in
figure 1. Since the length scale for the density decrease is small compared to that for
the variation of temperature, we assume that the density profile is a step function at
Y = 0. Since the pair correlation function χ is large compared to 1 in the boundary
layer, we can use the approximation (4.14) for the y-momentum balance equation,

d(χT )

dY
=

6φcg cos (θ)

π(pc − BcG2
c)

. (5.1)

This can be easily solved to obtain

T =
6φcgY cos (θ)

π(pc − BcG2
c)χ

. (5.2)

The energy conservation equation (3.8), expressed in terms of T and Y , using the
approximation (4.17) for the right-hand side of the energy balance equation, is

d

dY

(
Kcχ

d2
T 1/2 dT

dY

)
=

Dcε
2χ

d4
T 3/2Rc

(
1

χ
− 1

χo

)
. (5.3)

Using the substitution (5.2) for the temperature, we obtain a second-order differential
equation for χ ,

d

dY

(
χ1/2Y 1/2 d(Y/χ)

dY

)
=

DcRc

Kcδ2

Y 3/2

χ1/2

(
1

χ
− 1

χo

)
. (5.4)

Using the substitution ψ = (χ/χo)
−1/2, we obtain an equation for ψ ,

d2ψ

dY †2
+

2

Y †
dψ

dY † +
ψ

4Y †2
= α2(ψ3 − ψ) (5.5)

where the scaled distance Y † = (Y/δ), and the parameter α2 = (RcDc/2Kcχo). It is
necessary to solve this equation subject to the boundary condition ψ = 1(χ =χo) in
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the limit Y † → ∞, and a matching condition for the energy flux at Y † = 0 which will
be determined a little later.

It is difficult to solve (5.5) analytically, and before proceeding to solve it numerically,
it is instructive to examine the limiting behaviour of the solutions. In the limit Y † → 0,
there are two linearly independent solutions for ψ ,

ψ1 = C(αY †)−1/2 + C3(αY †)1/2 + o(Y †1/2
), (5.6)

ψ2 = D log (αY †)(αY †)−1/2 + D3(log (αY †)
3

− 6 log (αY †)
2
+ 18 log (αY †) − 24)(αY †)1/2 + O(Y †1/2

). (5.7)

There is an additional solution which increases proportionally to Y †−1
in the limit

Y † → 0, since (5.5) is a nonlinear,

ψ3 = ±
(

1

2αY † +
αY †

3
+ o(Y †)

)
. (5.8)

It can easily be verified, as follows, that the solutions ψ2 and ψ3 do not satisfy the
zero flux boundary condition in the limit Y † → 0. The pair correlation function is
χ =(χo/ψ

2), and the temperature field is substituted using (5.2) to obtain the heat
flux at the top surface,

q = −K
dT

dY

= −Kc(6φcgδ cos (θ))3/2

(πpc)3/2

Y †1/2

ψ

d(Y †ψ2)

dY † . (5.9)

It is easy to verify that the zero flux condition is satisfied in the limit Y † → 0 only
for the solution ψ1 in (5.6), whereas the flux approaches a constant value in the limit
Y † → 0 for ψ2, and diverges in the limit Y † → 0 for ψ3. Therefore, the only solution for
(5.5) which satisfies the zero flux boundary condition is ψ = ψ1, in which the constant
C is determined from the requirement that the function approaches ψ = 1(χ = χo) in
the limit Y † → ∞. Equation (5.5) cannot be solved analytically, but has to be solved
numerically in order to determine ψ as a function of Y †. The numerical solution
is complicated owing to the stiff nature of the equation, and we use a shooting
method in order to determine the value of the constant C required to obtain ψ =1
for Y † → ∞. Owing to the divergence of the solution (5.6) in the limit Y † → ∞, and the
stiff nature of (5.5), we obtain a solution in the domain 0.0001 � (αY †) � 10, with the
boundary condition Ψ = (C/(αY †)1/2) and (dΨ/d(αY †)) = −C/(2(αY †)3/2). The value
of the constant C required to satisfy the condition for (αY †) = 10 turns out to be
0.744, and the solution for the function ψ =Ψ (αY †) is shown in figure 9. A polynomial
approximation for Ψ in the domain 0 � (αY †) � 5, which is correct to within ±0.5 %,
is

Ψ (αY †) = ((αY †)−1/2)(0.742498 + 0.410196(αY †) − 0.0213402(αY †)2

− 0.00272469(αY †)3 + 0.000817992(αY †)4 − 0.0000585208(αY †)5). (5.10)

This completes the solution of the volume fraction and temperature profiles at the
top boundary layer.

We now return to the comparison of the length scales for the variation of the
density and the temperature. The asymptotic solution obtained above predicts that

ψ ∝ Y †−1/2
in the limit Y † → 0, and therefore the pair distribution function decreases
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Figure 9. The function Ψ (αY †), which is the solution of (5.5), as a function of αY †.

as χ =χoY
†. However, it should be noted that the minimum pair distribution function

in the dilute limit is 1, and the pair distribution function cannot decrease below 1.
Therefore, the boundary layer solution is valid only for Y † >χ−1

o , where χo is large
compared to 1 for a dense flow. In the region where the density decreases to zero, the
pair correlation function χ ∼ 1, and the coordinate Y † ∼ χ−1

o . Therefore, the length
scale for the decrease of the density is (δ/χo). This length scale for the decrease of
the density can also be derived in another manner. The temperature approaches a
constant value, proportional to (φcgδ cos (θ)/(pc − BcG

2
c)χo) in the limit Y † → 0, as

indicated by the scaling in (5.2). When the volume fraction is small, the pair correlation
approaches 1, and the length scale can be derived from the momentum conservation
(5.2). The pressure is proportional to the volume fraction φ in the limit φ � 1, and
therefore the length scale obtained by a balance between the pressure gradient at a
location and the weight of material above that location is (T/g) ∼ (δ/χo). Therefore,
the length scale over which the density decreases to zero is (δ/χo), which is small
compared to the length scale for the variation in the temperature, δ, as anticipated
earlier.

A uniform approximation can now be obtained for the temperature field which
is valid in the bulk and both the boundary layers using asymptotic matching. The
solution (4.26), written in terms of the coordinate system with origin at the top of the
boundary flowing layer, is

T =
6φog cos (θ)

π(pc − BcG2
c)χo

(
h

(
1 − c exp (−αy/δ)

1 + c exp (−αy/δ)

)2

− y

)
. (5.11)

The solution (5.2), with (χ/χo) = (1/Ψ (Y †)2), is

T =
6φog(h − y) cos (θ)

π(pc − BcG2
c)χoΨ (α(h − y)/δ)2

. (5.12)

When we add the two solutions (5.11) and (5.12), and subtract the common limit,
which is the value of (5.11) in the limit (h − y) → 0 or the value of (5.12) in the limit
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((h − y)/δ) → ∞, we obtain,

T =
6φog cos (θ)

π(pc − BcG2
c)χo

(
h

((
1 − c exp (−αy/δ)

1 + c exp (−αy/δ)

)2

− 1

)
+

(h − y)

Ψ (α(h − y)/δ)2

)
. (5.13)

From the above temperature profile, the pair correlation function is determined from
(5.2), and the volume fraction is determined from the pair correlation function.

6. Uniform approximation
The above boundary layer solutions indicate a uniform approximation that could

be used to describe the flow of thinner but dense layers, where the separation between
the conduction length δ and the layer height h is not large. We use the relations
for the pressure, viscosity and dissipation coefficient, which are correct to leading
order in an expansion in χ−1. Using the approximation (4.14) and (4.17) for the
viscometric coefficients and the ratio of production and dissipation, the momentum
balance equation in the vertical direction becomes

T =
6

π

φgY cos (θ)

(pc − BcG2
c)χ

(6.1)

where Y is the coordinate from the top of the granular layer, as shown in figure 1.
We simplify the temperature equation (6.1) by assuming φ =φo. As noted while
determining the boundary layer solution at the top surface in the previous section,
this assumption is not valid in a region of thickness (δ/χo) at the top surface, where
the density decreases from φo to zero, but is valid in the bulk of the flow and the
bottom boundary layer. If this is inserted into the energy conservation equation, with
the approximation (4.17) for the difference between the shear production and energy
dissipation, we obtain

d

dY

(
Kc

d2
χ1/2Y 1/2 d

dY

(
Y

χ

))
= −RcDcε

2

d4

Y 3/2

χ1/2

(
1

χ
− 1

χo

)
. (6.2)

Using the substitution χ = (χoY/hv2), we obtain

d2v

dY 2
+

1

Y

dv

dY
+

RcDcε
2

2Kcχod2

(
v − hv3

Y

)
= 0. (6.3)

If we scale the Y coordinate by the total height h, we obtain a nonlinear differential
equation for v,

d2v

dY ∗2
+

1

Y ∗
dv

dY ∗ + Ah2

(
v − v3

Y ∗

)
= 0 (6.4)

where Y ∗ = (Y/h), and the parameter A= (RcDcε
2/2Kcχod

2). The boundary conditions
at the top surface Y = 0 and at the bottom surface Y = h can be expressed in terms
of the variable v,

dv

dY ∗ = 0 at Y ∗ = 0,

dv

dY ∗ =
βhv

2
at Y ∗ = 1.

⎫⎪⎪⎬
⎪⎪⎭ (6.5)

The relationship between the approximate equation (6.4) and the asymptotic
solution (5.13) can be inferred by recognizing that the parameter A=(α/δ)2, where
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α = (RcDc/2Kcχo)
1/2 was used in (5.13). In the limit h � δ, the parameter Ah2 is large

compared to 1, and the solution for (6.4) is v =
√

Y ∗. This is identical to the outer
solution,

χ = χo, T =
6

π

φogY cos (θ)

(pc − BcG2
c)χo

. (6.6)

The boundary layer solutions can also be derived by carrying out an asymptotic
expansion of (6.4) about Y = 0 and Y =h, and using the boundary conditions (6.5).

7. Results
The results of the boundary layer analysis, equation (5.13), and the results of

the simplified equation, (6.4), are compared here with the results of the complete
momentum and energy equations (3.1) and (3.3). From the results of § 3, boundary
layer solutions exist over a larger range of coefficients of restitution for the partially
rough particle model, and so we use this model for the present results. It should be
noted that boundary layer solutions do not exist for nearly elastic particles in the
limit ε → 0, but exist only when the coefficients of restitution are below a maximum
value. For the partially rough particle model and the hard-sphere pair correlation
function, this maximum coefficient of restitution en is a little less than 0.9. Therefore,
we are constrained to use coefficients of restitution less than about 0.9, though the
boundary layer analysis has been carried out in the limit ε =(1 − en)

1/2 → 0.
In the numerical solution of the governing equations (3.1) and (3.3), we express

the volume fraction in terms of the pair distribution function using (2.7), and then
solve for the pair distribution function and the temperature profiles. The viscometric
coefficients were expanded in a series in the small parameter χ−1

o , and the leading-
order, first and second corrections were retained for the purposes of the calculation.
A Chebyschev collocation technique was used for solving (3.1) and (3.3), as well
as the simplified equation (6.4). The number of collocation points is 100 over the
interval y =0 to y = h in all the results reported here. It was verified that the values
of the maximum temperature did not vary by more than 1 % when the number
of collocation points was changed from 100 to 200. For the purposes of graphical
representation we define a scaled temperature T ∗,

T = T ∗ 6φogh cos (θ)

π (pφ − BφG2)|
φ=φo

. (7.1)

This scaled temperature is defined so that T ∗ =(1 − (y/h)) for the outer solution. The
scaled strain rate is defined as

γ̇ =
γ̇ ∗

G

(
6φogh cos (θ)

π (pφ − BφG2)|
φ=φo

)1/2

. (7.2)

The scaled strain rate is defined so that γ̇ ∗ =(1 − (y/h))1/2 for the outer solution.
Figure 10 shows typical profiles for the temperature, volume fraction and pair

distribution function for a layer of thickness 40 particle diameters and bulk volume
fraction φo = 0.6, and (βd) = 1 in boundary condition (4.9). The numerical solution of
the complete momentum and energy conservation equations (3.1) and (3.3), were used
for obtaining these results. Figure 10 also shows the ratio of the scaled temperature
and the outer solution, T ∗ =(1 − (y/h)). It is observed that the pair distribution
function increases in the bottom boundary layer in the region where the temperature
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Figure 10. The scaled temperature T ∗ (equation (7.1)) (�), the ratio of the actual temperature
and the outer solution, T ∗/(1 − (y/h)) (�), the ratio of the volume fraction and its bulk value,
φ/φo (�), and the ratio of the pair distribution function and its bulk value, χ/χo (�), as a
function of (y/h) for a flow with bulk volume fraction φo = 0.6, bulk pair distribution function
χo = 21.34, and angle of inclination θ = 19.92◦. The broken lines shows the leading-order
solution for the temperature, T ∗

o = (1 − (y/h)), and the strain rate, γ̇ ∗
o = (1 − (y/h))1/2.

decreases due to the dissipative nature of the boundary, but there is very little change
in the volume fraction at this boundary. This is due to the rapid variation of the pair
distribution function with volume fraction as the limit of close packing is approached.
At the top boundary, it is observed that there is a relatively large variation in the
ratio of the temperature and the leading approximation, (T ∗/(1−(y/h))), even though
the absolute value of T ∗ is small, because the leading approximation approaches zero
at y = h. The scaled strain rate γ̇ ∗ shows an initial increase at the base, and is then
close to the outer solution (1 − (y/h))1/2 in the bulk. However, there is a substantial
difference between the scaled strain rate and the outer solution in the top boundary
layer, and the scaled strain rate does not decrease to zero at the top surface. The
graph of (T ∗/(1 − (y/h))) also shows that the thickness of the boundary layers at the
top and bottom are of equal magnitude. It is observed that the length scale for the
evolution of the temperature and the pair distribution function to their bulk values
are comparable, whereas the length scale for the evolution of the volume fraction to
its bulk value at the top is much smaller.

One of the assumptions made while deriving the boundary layer solution at the top
surface was that the length scale for the decrease of the volume fraction to zero is small
compared to the length scale for the decrease of the pair distribution function. The
assumption can be quantitatively tested as follows. First, we define two length scales,
lφ and lχ as the distance from the top surface at which φ = 0.95φo and χ =0.95χo.
Though the factor 0.95 is arbitrary, the length scales provide some indication of the
distance over which the volume fraction and the pair distribution function evolve
to their bulk values. The ratio of these length scales and the particle diameter are
shown in figure 11 as a function of (φc − φo), where φc =0.64 is the volume fraction
for close packing, and φo is the bulk volume fraction. It is observed that lφ decreases
for φ → φc, whereas lχ increases in this limit. Figure 11 also shows the ratio (lχ/ lφ),
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Figure 11. The length scales lφ (�), lχ (�), both scaled by the particle diameter d , and the
ratio lχ / lφ (�) as a function of (φc −φ), where φc = 0.64 is the volume fraction at close packing.
The broken line shows a slope of −1.

which increases proportionally to (φc − φo)
−1. Note that the pair correlation function

χo, equation (2.7), also increases as (φc − φo)
−1 in the limit φc → φo. Thus, this verifies

the assumption made in the asymptotic analysis that the length scale for the decrease
of the volume fraction to zero at the top of the layer is O(χ−1

o ) smaller than the
boundary layer thickness over which the pair distribution function decreases to zero,
and the volume fraction profile can be considered to be a step function over length
scales comparable to the boundary layer thickness.

The details of the temperature and density variations near the top boundary layer,
which are not clearly visible in figure 10, are shown in figure 12. It should be noted
that for the boundary layer at the top, we had used the condition that the flux is zero
at Y = 0 for choosing the boundary layer solution ψ1 in equation (5.6). However, this
was not equivalent to a zero temperature gradient; it can easily be verified that the
temperature gradient is non-zero at the top owing to the first correction proportional
to C3(αY †)1/2 in (5.6) for ψ1. The flux decreases to zero because the pair correlation
function χ = (χo/ψ

2
1 ) decreases to zero, and consequently the thermal conductivity

goes to zero. This is a consequence of the assumption that the flow is dense, and so
only the leading term in the expression for the conductivity proportional to χ has
been retained. As the pair correlation function decreases, there is a transition from a
dense to a dilute flow, and then to a ballistic layer.

It is clear from figure 12(b) that there is close agreement between the asymptotic
solution (5.13) and the solution of the simplified equation (6.4) in the upper boundary
layer, since both have made use of the large-χ approximation. The temperature
predicted by the numerical solution depends on the boundary condition we impose at
the top. If the zero temperature condition is imposed, the temperature is lower than
that from the simplified equation (6.4), whereas if we impose a zero flux condition, the
temperature is higher than that of the simplified equation (6.4). The trend observed in
the numerical solution with the zero flux condition is consistent with the simulations
of Silbert et al. (2001), which find an increase in temperature near the top surface.
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Figure 12. (a) Volume fraction, (b) scaled temperature and (c) scaled strain rate in the upper
boundary layer region for a flowing granular layer with h = 40d , en = 0.8, et = 1.0, and volume
fraction for the outer solution φo = 0.6 for βd = 1.0 in the boundary condition (4.9). Results
for other values of β are indistinguishable from these. The solid lines show the results of
the numerical solution of the momentum and energy equations, (3.1) and (3.3), with the zero
temperature boundary condition at the top surface (�), and the zero flux condition at the top
surface (	). The broken lines show the results of the solution of the approximate equation (6.4),
and the dotted lines show the asymptotic solution (5.13). The asymptotic results are not shown
in (a) for clarity.

Though this has been attributed to a term in the energy flux equation which is
proportional to the gradient in the temperature (Brey, Ruiz-Mantero & Moreno
2001; Soto, Mareschal & Risso 1999), we observe this increase even when the term
proportional to the temperature gradient is not included. Further work is required to
resolve this difference, and to identify the elements in the full equations responsible
for this increase which were neglected when the approximate equation (6.4) was
derived. Theoretically, there are two issues which need to be examined – the effect of
the neglected terms in the expressions for the viscometric coefficients in the region
where the pair distribution function is O(1), and the applicability of kinetic theory in
the ballistic layer at the top. It can also be seen from figure 12(a) that the spacing
between grid points is becoming of the same magnitude as the thickness of the region
over which the density decreases, even when we have used a hundred Chebyschev
collocation points. More sophisticated numerical techniques may also be required to
resolve the sharp density variations at the upper boundary.
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It is clear that there are difficulties with numerical resolution at the upper boundary,
and the variation in the temperature predicted by the numerical solution of (3.1) and
(3.3), is not captured by the solution of the simplified (6.4) or the boundary layer
solution (5.13). However, other aspects of the numerical solution are in agreement
with the asymptotic analysis. It is found that the length scale for the decrease in the
density is small compared to the boundary layer thickness. Further, in the numerical
solutions, the density and temperature profiles in the bulk and the bottom boundary
layer are not affected by the small variations due to different boundary conditions at
the top. The numerical solutions and those of the approximate equation show some
difference only in a region of thickness less than a particle diameter at the top. This
indicates that the bulk of the flow and the bottom boundary layer are adequately
captured by the simplified equation (6.4).

The variation of the strain rate at the top of the boundary layer is shown in
figure 12(c). Once again, it is observed that there is close agreement between the
solution of the simplified equation (6.4) and the asymptotic solution (5.13), though
the numerical solution of equations (3.1) and (3.3) depends on the boundary conditions
imposed at the top. There is a slight increase in the strain rate at the top if a zero
temperature gradient condition is imposed, but the strain rate decreases to zero if the
zero temperature condition is imposed. The non-zero strain rate at the top could be
the reason for the difference in rheology between the bulk and the surface layer that
has been reported previously. If the stress is given by the Bagnold law, and there is
no deviation from this law at the top surface, then the strain rate is proportional to
(h − y)1/2, and the velocity profile which satisfies the zero velocity condition at the
base is proportional to (h3/2 − (h − y)3/2). However, if the strain rate approaches a
constant value at the top surface y =h, then the velocity profile has an additional
component which is a linear function of distance from the top surface. This could
be the reason for previous observations of a linear velocity profile in the top surface
layer, and a Bagnold profile in the bulk.

The effect of the temperature boundary conditions at the bottom boundary is
shown in figure 13 for different values of the parameter (βd) in the boundary
condition (4.9). It is observed that the temperature increases near the base when
(βd) is negative (energising base), while it decreases near the base when (βd) is
positive (dissipative base). Figure 13(a) shows that the volume fraction profile is
remarkably flat in the bulk of the flow, though there are variations near the base
due to the temperature boundary condition. The temperature profiles are shown in
figure 13(b). The results of the full numerical solution for (βd) = −1.0 are not shown,
because the gradient at the base becomes very large and convergence could not be
obtained with the Chebyschev collocation code used here. For all other values of
(βd), there is close agreement between the numerical results (3.1) and (3.3), and the
solutions of the simplified equation (6.4). There is also good agreement between the
asymptotic results (5.13) and the numerical results, though this agreement becomes
poorer when the base is highly dissipative. Interestingly, the temperature from the
numerical solution is closer to a linear profile than the asymptotic solution (5.13) and
the solution of the simplified equation (6.4) when the base is dissipative. It is observed
that the strain rate decreases at the base if the base is dissipative, and increases if
the base is energetic. For a very energetic base, the strain rate is large at the base,
indicating that the velocity profile may resemble that obtained from a slip boundary
condition. In the reminder of the results section, we use the case (βd) = 1, in order
to examine the effects of variations in volume fraction, height and coefficients of
restitution.
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Figure 13. (a) Volume fraction and (b) scaled temperature as a function of height for a
flowing granular layer with h = 40d , en = 0.8, et = 1.0, and volume fraction for the outer
solution φo = 0.6, corresponding to angle of inclination 19.91◦, for different values of the
parameter (βd) in the boundary condition (4.9). �, βd = 3.0; �, βd = 1.0; �, βd =0.3; �,
βd = 0.1; �, βd = 0.0; �, βd = −0.1; ×, βd = −0.3; +, βd = −1.0. The solid lines show the
results of the numerical solution of the momentum and energy equations, (3.1) and (3.3), the
broken lines show the results of the solution of the approximate equation (6.4), and the dotted
lines show the asymptotic solution (5.13). The asymptotic results are not shown in (a) for
clarity.

Figure 14 shows the variation in the volume fraction and temperature as the
coefficient of restitution is changed for a layer with height equal to 40 particle
diameters and with volume fraction for the outer solution φo =0.6. It is observed that
the numerical and asymptotic temperature profiles are in good agreement for lower
values of the coefficients of restitution, but the agreement becomes poorer, as expected,
as the collisions become more elastic. This is because the conduction length δ = (d/ε)
increases as the coefficient of restitution increases and ε = (1 − en)

1/2 becomes smaller,
and the boundary layer approximation becomes less accurate. Figure 15 shows the
variation in the volume fraction and temperature as the volume fraction for the
outer solution φo is changed. The trend in this figure indicates that the agreement
between the asymptotic and numerical results is poorer as the volume fraction is
increased. Further, the temperature obtained from the asymptotic solution becomes
negative at the highest volume fraction φ =0.63. This is counter-intuitive, because the
simplified equation (6.4) was derived using the assumption that the pair correlation
function is large, and this assumption should have a greater validity as the volume
fraction is increased. The reason for this disagreement is the presence of the factor
α = (RDc/2Kcχo)

1/2 in the asymptotic solution (5.13). It is clear that for an asymptotic
solution to be valid, it is necessary that (δ/α) has to be small compared to the total
height h in (5.13). As the pair distribution function χo increases, α becomes small
and the assumption (δ/α) � h becomes invalid when the volume fraction is near close
packing. This explains why the agreement between the asymptotic and numerical
results becomes poorer as the density increases.

Finally, the variation of the volume fraction and temperature profiles with height h

is shown in figure 16. There is good agreement between the solution of the complete
equations of motion (3.1) and (3.3), and the solutions of the simplified equation (6.4).
The asymptotic solutions (5.13) have a qualitatively similar behaviour to the numerical
solution, though the agreement is less good.
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Figure 14. (a) Volume fraction and (b) scaled temperature as a function of height for a flowing
granular layer with h = 40d , βd =1.0 in boundary condition (4.9), the volume fraction for the
outer solution is φo = 0.6 and for different coefficients of normal and tangential restitution. �,
en = 0.85, et = 1.0, θ = 18.36◦; �, en = 0.8, et = 1.0, θ = 19.91◦; �, en = 0.7, et = 1.0, θ =21.80◦;
�, en =0.8, et = 0.8, θ = 21.58◦. The solid lines show the results of the numerical solution of
the momentum and energy equations (3.1) and (3.3), the broken lines show the results of the
solution of the approximate equation (6.4), and the dotted lines show the asymptotic solution
(5.13). The asymptotic results are not shown in (a) for clarity.
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Figure 15. (a) Volume fraction and (b) temperature as a function of height for a flowing
granular layer with h = 40d , βd = 1.0 in boundary condition (4.9), en = 0.8 and et = 1.0 for
different values of the volume fraction for the outer solution is φo. �, φo = 0.52, θ = 20.09◦; �,
φo = 0.55, θ =20.01◦; �, φo = 0.58, θ =19.95◦; �, φo = 0.6, θ = 19.91◦; ×, φo = 0.62, θ =19.88◦;
+, φo = 0.63, θ = 19.87◦. The solid lines show the results of the numerical solution of the
momentum and energy equations, (3.1) and (3.3), the broken lines show the results of the
solution of the approximate equation (6.4), and the dotted lines show the asymptotic solution
(5.13). The asymptotic results are not shown in (a) for clarity.

Since the above comparisons have shown good agreement between the numerical
solutions of the complete equations (3.1) and (3.3) and the solution of the approximate
equations (6.4), we use (6.4) to further analyse the flow behaviour in the regime where
the separation of scales between the flow height and boundary layer thickness is not
large. The issue we focus on is a minimum height hstop required for a steady velocity
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Figure 16. (a) Volume fraction and (b) scaled temperature for a flowing granular layer with
βd = 1.0 in boundary condition (4.9), en = 0.8, et = 1.0, and volume fraction for the outer
solution φo = 0.6 and angle of inclination θ = 19.911◦ for different values of h. The solid lines
show the results of the numerical solution of the momentum and energy equations, (3.1) and
(3.3), the broken lines show the results of the solution of the approximate equation (6.4), and
the dotted lines show the asymptotic solution (5.13). The asymptotic results are not shown in
(a) for clarity.
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Figure 17. The scaled temperature T ∗ as a function of the scaled height y/h, obtained from
a solution of the simplified equation (6.4) with Ad2 = 1, and with βd =1 in the boundary
condition (4.9), for different values of the total height. +, h = 40d; ×, h = 20d; �, h = 10d; �,
h = 8d; �, h = 6d; ×, h =5.6d . The temperature decreases to zero at h = 5.55d .

profile. An energy balance argument can be used to explain the physical reason for
the minimum height. An example of the change in the temperature profile as the
height is decreased is shown in figure 17. It is observed that the maximum temperature
decreases as height decreases, and this temperature reduces to zero throughout the
flow at a finite height. The physical reason for this is as follows. The flow is driven
by a balance between the source of energy due to the mean shear and the dissipation
due to inelastic collisions. There is dissipation of energy due to particle collisions
in the flow as well as due to particle collisions with the base in this case, since the
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Figure 18. The scaled minimum height hstop/d as a function of the parameter Ad2 in equation
(6.4) for different values of the parameter βd in the boundary condition (4.9). �, (βd) = 0.1; �,
(βd)= 0.3; �, (βd) = 1.0; ×, (βd) = 3.0; +, (βd)= 10.0. The broken line shows hstop for a flow
with zero temperature boundary condition at the base. The upper dotted line shows a slope
of −0.5, while the lower dotted line shows a slope of −1.0.
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Figure 19. The minimum height hstop/d as a function of the parameter βd in equation (4.9)

for different values of the parameter Ad2 in the boundary condition (6.4). �, Ad2 = 0.01; �,
Ad2 = 0.1; �, Ad2 = 1.0; ×, Ad2 = 10.0. The dotted line shows a slope of 1.0.

base is dissipative. At constant temperature, the rate of shear production of energy
and dissipation in the flow decrease as the layer height decreases, whereas the rate of
dissipation in the base does not decrease. Therefore, the temperature has to decrease
as the height decreases, and there is a minimum height at which the temperature
decreases to zero. Below this height at which the rate of production is not sufficient
to compensate for the rate of dissipation in the base, and the flow stops. The height
at which the temperature decreases to zero is identified as the minimum height hstop .

The scaled minimum height, (hstop/d), is shown as a function of the parameter
Ad2 in (6.4) for different boundary conditions in figure 18, and as a function of the
parameter (βd) in the temperature boundary condition (4.9) in figure 19. It should
be noted that values of (hstop/d) below 1 are unrealistic; they are shown so that the



Dense granular flow down an inclined plane 161

scaling of (hstop/d) with (Ad2) and (βd) can be inferred. The following qualitative
features in the limit of low and high dissipation are observed.

(a) In the limit of high dissipation, figure 18 shows that (hstop/d) ∝ (Ad2)−1/2. The
physical reason for this is as follows. When the base is highly dissipative, with β � 1 in
the boundary condition (4.9), it is equivalent to having a zero temperature boundary
condition at the base. In this case, β ceases to be a parameter in the problem, and
the only parameters in equation (6.4) are A and h. By dimensional analysis, it is
clear that (Ah2) has to be a constant when the flow stops, and therefore hstop ∝ A−1/2.
The numerical result for the zero temperature boundary condition is also shown in
figure 19, and the following scaling law is obtained from this solution:

hstop = 2.4A−1/2. (7.3)

(b) The minimum height hstop becomes small in the limit of low dissipation, and
is identically equal to zero for β = 0. This is because when there is no dissipation
in the base, both the rate of production and dissipation in the granular material
decrease proportionally to each other as the height decreases at constant temperature.
Figure 19 shows that hstop decreases proportionally to β in the limit β → 0. Based
on dimensional analysis, the relation for hstop in this limit has to be of the form
hstop = βA−1. The scaling law obtained from figures 18 and 19 in this limit is

hstop = 0.95βA−1. (7.4)

In order to relate the minimum height hstop to the angle of inclination, it
is necessary to relate the parameter (Ad2) to the angle of inclination. Since
(Ad2) = (RcDcε

2/2Kcχo), the dependence of (Ad2) on the angle of inclination is
due to the dependence of the pair distribution function χo on the angle of inclination.
Note that the limit χo � 1 corresponds to the limit (Ad2) � 1. This relation between
the angle of inclination and χo was analysed earlier by the author (Kumaran 2006a),
and a series expansion was derived for tan (θ) as a function of (1/χo), where θ is the
angle of inclination. The relation between tan (θ) and χo was of the form

tan (θ) − tan (θc) = C1(φoχo)
−1 + C2(φoχo)

−2 (7.5)

where θc is the minimum angle at which flow is initiated, and C1 and C2 are
parameters which depend on the microscopic model used for particle interactions.
These parameters are

tan (θc) =
1.02693εr(

0.874417 + ε2
r − 0.437208ε2

) , (7.6a)

C1 = −
0.254845εr

(
0.376137 + 0.252379ε2 − ε2

r

)
(
0.874417 + ε2

r − 0.437208ε2
)2

, (7.6b)

C2 =

0.121859εr

(
ε4

r + 0.298183ε2
r + 0.307759 − 0.4743089ε2

r ε
2 + 0.033950ε4 − 0.020421ε2

)
(
0.874417 + ε2

r −0.437208ε2
)3

,

(7.6c)

for rough spheres, where ε = (1 − en)
1/2, εr = ε

√
1 + at , and

tan (θc) =
0.530463εpr(

0.50768 + ε2
pr − 0.25384ε2

) , (7.7a)



162 V. Kumaran

0.5 1.0 0.5 2.0

tan(θ)

0

5

10

15

20

25

hstop

d

Figure 20. The minimum height hstop as a function of tan (θ ), where θ is the angle of
inclination, for different values of the parameter β in the boundary condition (4.9). Results
are shown for �, β =0.1, and +, βd = 10.0; the results for the other values βd = 0.3; βd = 1.0
and βd =3.0 are in between these two curves. The constitutive relations for the partially rough
particle model were used, with coefficients of restitution en = 0.85 and et = 1.0 (solid line),
en = 0.8 and et =1.0 (broken line), en =0.7 and et = 1.0 (dot-dashed line), and en = 0.8 and
et = 0.8 (dotted line).

C1 =
0.223654εpr

(
ε2

pr − 0.087067ε2 − 0.126896
)

(
0.50768 + ε2

pr − 0.25384ε2
)2

, (7.7b)

C2 =

0.11272εpr

(
ε4

pr − 0.022895ε2
pr − 0.197195ε2

prε
2 − 0.013628ε2 + 0.00889ε4 + 0.067511

)
(
0.50768 + ε2

pr − 0.25384ε2
)3

,

(7.7c)

for partially rough spheres, where ε = (1 − en)
1/2 and εr = ε

√
1 + at/4. An analytical

relation between (Ad2) and the angle of inclination θ can be obtained if we retain
only the term proportional to C1 in (7.6) and (7.7),

(Ad2) =
RcDcε

2(tan (θ) − tan (θc))φo

2KcC1

. (7.8)

This relation provides a first approximation for the parameter (Ad2) in terms of the
angle of inclination, and it is useful to first examine the variation of hstop with the
angle of inclination using this approximation. For a highly dissipative base, figure 18
shows that (hstop/d) ∝ (Ad2)−1/2. Inserting this into (7.8), we obtain the scaling

hstop

d
∝ (tan (θ) − tan (θc))

−1/2 (7.9)

for (βd) � 1. For a base with less dissipation, figure 18 shows that (hstop/d) ∝ (Ad2)−1.
Inserting this into (7.8), we obtain the scaling

hstop

d
∝ (tan (θ) − tan (θc))

−1 (7.10)
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for (βd) � 1. Quantitative results for (hstop/d) as a function of tan (θ) for the partially
rough particle model, using (7.7) for the relation between tan (θ) and χo, are shown
in figure 20. It is observed that in all cases, hstop increases as the angle of inclination
is decreased, and diverges at a finite angle θ = θc. Further, figure 20 shows that the
angle θc does not vary much when the coefficients of restitution are 0.8 or below, and
the minimum height hstop also shows little variation with the coefficient of restitution
for this model.

8. Conclusions
At the outset, it is important to clarify the basic assumptions made to obtain the

present results. The basic equations are the momentum and energy conservation
equations, in which the stress and heat flux are given by constitutive relations
derived from kinetic theory (Kumaran 2006a). The boundary conditions are of a
form first proposed by Jenkins & Richman (1985), which is widely used in the
literature. The constitutive relations were derived using the Enskog approximation,
which states that the pair distribution function is the product of the single-particle
distribution functions. The Enskog approximation incorporates the reduction in the
free volume as a gas becomes dense, and includes the pre-collisional correlations in
particle positions through the pair distribution function, but does not include the
pre-collisional correlations in the velocities of particles. An earlier study (Kumaran
2006c) showed that these correlations do not change the form of the constitutive
relations, but could change the numerical values. This is in contrast to elastic fluids,
where studies by Ernst et al. (1978) have shown that correlations cause a logarithmic
dependence of the stress on the strain rate in two dimensions, and a 3/2 power
dependence in three dimensions, whereas the Chapman–Enskog procedure predicts
that the viscous term is proportional to the strain rate and the Burnett term is
proportional to the square of the strain rate. In addition, the pair correlation function
was assumed to be of the form reported in the literature for a dense gas of hard
spheres at equilibrium. It is known that shear could change the form of the pair
correlation function, which could result in changes in the numerical values of the
results reported here. However, the qualitative features of the present results, which
depend only on the forms of the constitutive relations used and not the values of the
viscometric coefficients, are likely to be robust.

In the present analysis, the issue that is not satisfactorily resolved is the boundary
layer at the top surface. The modelling of this boundary layer is complicated by the
fact that there is a transition from a dense flow to a ballistic regime, and the dynamics
in the ballistic regime cannot be modelled using constitutive relations obtained for
dense flows. In the boundary layer analysis, two length scales at the top surface were
postulated: the conduction length δ over which there is a deviation in the temperature
from its linear profile, and a smaller length (δ/χo) over which the density decreases
at the top surface. The latter was obtained based on the estimate that the pair
distribution function is O(1) for the dilute flow at the top, together with the linear
decrease in temperature with height in the bulk of the flow. Note that (δ/χo) is also
the thickness of the ballistic layer, or the maximum height that a particle at the
top will travel ballistically if it has a temperature T ∼ (gδ/χo). So this simple scaling
analysis indicates that the thickness of the ballistic layer is small compared to the
conduction length. The analysis in § 4 only addressed variations over the length scale
δ in order to obtain the temperature profile, and assumed that the volume fraction
is a step function when viewed on this scale. Simulations of the complete equations
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do reveal structure in the temperature profile at a length scale small compared to δ,
which is not captured by the asymptotic analysis or the simplified equations, though
the magnitude of the temperature is correctly predicted by the scaling analysis. A
similar behaviour is observed in simulations (Silbert et al. 2001), though it is not clear
if the increase in temperature at the top surface occurs in the dense layer or in the
ballistic layer. The comparison between the asymptotic and numerical results clearly
reveals that some elements present in the complete momentum and energy equations
are not present in the asymptotic solutions, and a more sophisticated asymptotic
analysis is required to capture these. In addition, the asymptotic analysis should be
able to match the flow in the dense layer with that in the ballistic layer, in order
to satisfactorily resolve the boundary layer flow in the top surface. However, the
present analysis has revealed that apart from the layer of thickness (δ/χo) at the
top, the temperature and density profiles in the reminder of the flow are adequately
captured by the asymptotic analysis and the simplified equation (6.4). This indicates
that the flow within the bulk is not sensitive to the boundary conditions applied at the
top.

At the bottom boundary, the analysis predicts that the temperature and strain rate
decrease if the boundary is dissipative, and increase if the boundary is energetic.
In addition, there is a small increase in the density, as shown in figure 10, if the
boundary is dissipative, and a slight decrease if the boundary is energetic. The
variation of the temperature and the strain rate are in agreement with the results
of simulations (Silbert et al. 2001; Delannay et al. 2007) for a dissipative base, but
the simulations report that the volume fraction is either a constant or is decreasing
slightly as the bottom base is approached. One reason for this discrepancy could
be that the governing equations assumed here are too simplistic, and it is necessary
to incorporate the higher moments of the velocity distribution function in order to
capture the variations of the angular velocity and the translational and rotational
temperatures. Another reason could be the layering of the particles at the base which
is observed in the simulations, due to the presence of the flat base. This could induce
a layered structure near the base which is different from the random structure that is
assumed in this analysis.

It is also observed that the angle of inclination varies only by about 0.2◦ when the
volume fraction changes from 0.52 to 0.62 for en = 0.8 and et = 1.0 in figure 15. This
is considerably smaller than the range between 21◦ and 25◦ observed in simulations
(Silbert et al. 2001). However, it should be emphasized that the present results were
obtained with the partially rough particle model of Kumaran (2006a), which is not
identical to that in the simulations. Therefore, it is not possible to get agreement for
the stresses and the angle of inclination quantitatively, just as the stress obtained using
the viscometric parameters for one fluid cannot be used to quantitatively predict that
in another fluid with a different set of parameters. However, if the rheological models
for the two fluids are the same, then the functional forms of the dynamical variables
for the two fluids will be the same.

In § 2, the density profile in the bulk of the flow was examined using an asymptotic
analysis in the ratio of the conduction length and the thickness of the flowing layer,
(δ/h). It was shown that the volume fraction in the bulk is a constant in the leading
approximation, and the leading correction to this constant volume fraction is O(δ/h)2.
This correction was evaluated using the rough and partially rough particle models of
Kumaran (2006a), and was found to be numerically small for a range of parameter
values. This provided a satisfactory explanation for the remarkable lack of variation
of volume fraction with height observed previously in simulations.



Dense granular flow down an inclined plane 165

The boundary layer at the bottom surface was analysed in § 3, using an inner
coordinate which is the distance from the bottom surface scaled by the conduction
length. The momentum and energy conservation equations were reduced to a second-
order equation for the volume fraction. In the limit where the inner coordinate
becomes large, this equation reduces to a diffusion equation. However, it was found
that the diffusion coefficient is negative in the limit en → 1 and et → 1, indicating that
the boundary layer solutions cannot be matched to the bulk solution. The diffusion
coefficients becomes positive only when the coefficients of restitution decrease below a
maximum value. An analytical solution for the boundary layer profiles was obtained
for dense flows using the inverse of the pair distribution function as a small parameter.
These were found to be in good agreement with numerical solutions of the complete
equations. The results obtained in this section also explain a salient feature observed
in simulations: that the boundary conditions at the bottom do not affect the density
and temperature profiles in the bulk of the flow.

We were able to derive an exact result which establishes a relationship between the
existence of boundary layers and the dependence of the volume fraction in the outer
region on the angle of inclination. This result states that a boundary layer solution
exists if and only if the viscometric parameters are such that the volume fraction
decreases as the angle of inclination increases. This implies that a stable flow will
not be achieved when the viscometric coefficients are such that the volume fraction
increases when the coefficient of restitution increases.

The results of § 3 indicate that the boundary layer solutions exist only when the
coefficients of restitution decrease below a maximum value; this value is about 0.75
for rough particles and close to 0.9 for partially rough particles. This is in qualitative
agreement with the simulation results of Silbert et al. (2001), where it is found that
a steady solution is possible only when the coefficient of restitution decreases below
about 0.92 for the models used there. It is necessary to be careful when making
quantitative comparisons, because friction was included in the model of Silbert et al.
(2001), but was not included while deriving the constitutive relations used here.
But the qualitative features obtained from the boundary layer analysis are certainly
observed in the simulations.

The momentum and energy equations were reduced to a second-order nonlinear
equation in the dense limit in § 5, using the inverse of the pair distribution function
as a small parameter. The solutions of this equation were found to be in quantitative
agreement with the solutions of the complete governing equations for the parameter
values studied here. This equation was then used to analyse the flows in thin layers.
It was found that the nature of the flow for thin layers depends on the nature of the
boundary conditions at the bottom surface. If the bottom boundary is dissipative, there
is a minimum height at which the temperature reduces to zero, and a steady flow is
not possible below this minimum height. This is because at constant temperature, the
rates of shear production and dissipation due to particle–particle collisions decrease
as the height decreases, but the rate of dissipation due to particle–wall collisions
does not decrease. The energy balance can be preserved only if the temperature
decreases, and there is a minimum height at which the temperature decreases to zero
and the flow stops. Below the minimum height, the rate of production due to shear
is not sufficient to compensate for the rate of dissipation. The minimum height hstop

was obtained as a function of the angle of inclination, and was also found to be
in qualitative agreement with simulation results. The hstop versus tan (θ) curves are
also found to be relatively insensitive to the coefficients of restitution, so long as the
coefficients are less than about 0.85.
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The present analysis is able to qualitatively reproduce most aspects of the flow
down an inclined plane. Some of the results, such as the domains for the existence
of boundary layer solutions and the hstop versus angle of inclination curves, are also
in reasonable quantitative agreement. However, there are quantitative differences. An
important difference is that the temperature profiles in simulations are not as linear
as those reported here for the same volume fractions, and the thicknesses of the
boundary layers in the simulations appear to be larger. A possible reason for this
is that the Torquato expression for the pair correlation function under-estimates the
pair correlation function for the sheared state. Note that in the asymptotic solution
(5.13), the boundary layer thickness is actually (δ/α), where α = (RcDc/2Kcχo)

1/2.
Therefore, if the pair correlation function in the analysis is lower than that in the
physical system, the boundary layer thickness in the analysis is also lower. Another
reason for quantitative differences is that the pair correlation function used here is
spherically symmetric, whereas it is likely to be asymmetric in a shear flow. Further
work needs to be done to obtain the pair correlation functions in shear flows, and to
incorporate the orientation dependence of the pair correlation function, in order to
obtain quantitative predictions.

Finally, the present analysis also suggests the minimal model required for describing
the dense flows down an inclined plane. The minimal model consists of the momentum
and energy balance equations, and it is necessary to include the dissipation of energy
due to inelastic collisions in the energy balance equations. It is necessary incorporate
the pressure, viscous stress and the Burnett coefficients in the constitutive relations,
in order to obtain physically realistic behaviour. In the dense limit, it is sufficient to
retain just the term proportional to the pair distribution function in the viscometric
coefficient and the dissipation coefficient. All of these coefficients can be determined
using kinetic theory, as was done in Kumaran (2006a), or by carrying out simulations
using some microscopic model for particle interactions. The one parameter which
is more difficult to determine in simulations is the parameter Rc. This is related to
first correction to the difference between the shear rate of production and the rate
of dissipation due to inelastic collisions in an expansion in the inverse of the pair
distribution function. This correction is essential for solving the model equations,
since the sign of this parameter determines whether a boundary layer solution is
possible. But this parameter is likely to be more difficult to evaluate from simulations,
since it involves calculating a small difference between the rates of production and
dissipation, both of which are nearly equal to each other. A possible way to evaluate
this is to use the temperature variations in the boundary layer to obtain the constant
α = (RcDc/2Kcχo)

1/2, and to obtain Rc from the numerically evaluated α.
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