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The finite amplitude stability of a plane Couette flow over a deformable solid medium is analyzed
with emphasis on the class of high Reynolds number �Re� modes, referred to as the wall modes, for
which the viscous stresses are confined to a thin layer adjacent to the fluid-solid interface with
thickness O�Re−1/3� times the channel width in the limit Re�1. Here, the Reynolds number is
defined in terms of the top plate velocity V and the channel width R. Previous linear stability
analyses have shown that the wall modes are unstable for Newtonian flow past a linear viscoelastic
solid. In the present study, the analysis is extended to examine the weakly nonlinear stability of these
unstable wall modes in order to determine the nature of bifurcation of the transition point to finite
amplitude states. To account for the finite strain deformations, the flexible solid medium is described
by a neo-Hookean elastic model which is a generalization of the commonly used linear constitutive
model. The linear stability analysis provides the critical shear rate �c and the critical wavenumber
in the axial direction �c, where the dimensionless shear rate is defined as �=��V2 /G, where � is the
fluid density and G is the shear modulus of the elastic solid. The critical parameter �c for the
neo-Hookean solid is found to be close to �c for the linear elastic solid analyzed in the previous
studies. The first Landau constant s�1�, which is the finite amplitude correction to the linear growth
rate, is evaluated in the weakly nonlinear stability analysis using both the numerical technique and
the high Re asymptotic analysis. The real part of the Landau constant, sr

�1�, is negative for the wall
mode instability in the limit Re�1 for a wide range of dimensionless solid thickness H, indicating
that there is a supercritical bifurcation of the wall mode instability. The amplitude of the
supercritically bifurcated equilibrium state is derived in the vicinity of the critical point. The
equilibrium amplitude, in the form A1e

2 / ��−�c�, is found to scale as Re−1/3 in the limit Re�1 and
is proportional to H2.3 for H�1 in the same limit. © 2008 American Institute of Physics.
�DOI: 10.1063/1.2982521�

I. INTRODUCTION

The loss of stability of a laminar profile by the inertial
forces has been studied extensively to comprehend the un-
derlying mechanism of laminar-turbulent transition. At high
Reynolds numbers, the asymptotic analyses of Corcos and
Sellars1 and Gill2 for axisymmetric disturbances revealed
that there exist two distinct classes of modes in a rigid pipe
flow, namely, the center modes and the wall modes. Linear
stability studies3 indicate that both these modes are stable,
though it has been speculated that these modes may be un-
stable to finite amplitude disturbances. In channels and tubes
lined with flexible medium, it is well known that, due to their
proximity with the solid boundary, the wall modes are af-
fected by wall flexibility, and they could become unstable
even to infinitesimally small disturbances.

In addition to the onset of transition, the wall mode in-
stability may also be of relevance to the drag reduction in the
turbulent flow past compliant surfaces. It is widely believed
that the turbulence in a wall-bounded shear flow attains self-
sustenance by the presence of mutually regenerating low-
speed streaks with streamwise velocity and streamwise
vortices.4–6 These structures are a result of the “bursting”
phenomenon in the near wall region with thickness around
50 wall units, and this bursting phenomenon is responsible

for the production of most of the turbulent kinetic energy.7

Wall mode disturbances confined to a thin layer near the wall
may influence the bursting mechanism, thereby affecting the
turbulent flow. Since the flow in the viscous sublayer, where
bursting takes place, is mostly laminar, the modes of distur-
bance near the wall are likely to be similar to those for the
laminar flow at a Reynolds number corresponding to the
shear rate at the wall in the turbulent flow. A wall mode
instability due to a compliant surface could alter the velocity
profile in the wall region to a new nonparallel base state and
affect the bursting phenomenon. In order to examine how the
wall mode instability could affect the bursting phenomenon,
it is first necessary to analyze the nature of finite amplitude
bifurcating states near the point of transition, which is exam-
ined in the present study.

The wall elasticity renders the dynamics of flow past a
compliant surface qualitatively different from that past a
rigid surface at high Reynolds numbers. It is known that the
compliant walls are useful in delaying the Tollmein–
Schlichting instability in boundary-layer flow encountered in
marine and aerospace applications.8–11 For a flow through a
gel-walled tube, the experimental evidence from Krindel and
Silberberg12 indicated that the drag force in a flexible tube is
much larger than that in a rigid tube with the same radius at
a Reynolds number where the flow in a rigid tube is laminar.
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This anomalous drag force along with the visual observa-
tions led them to conclude that the onset of laminar to tur-
bulence transition in a flow through a gel-walled tube can
occur at a Reynolds number much smaller than 2100, the
transition Reynolds number for flow through a rigid tube.
Motivated by this observation, extensive studies centered
around the linear stability analysis of fluid flow through
tubes and channels bounded by compliant walls have been
carried out. However, most of these studies are on the zero
Reynolds number stability in the absence of inertia and the
numerical extension of the results to finite Reynolds
numbers.13–16 An experimental confirmation of viscous insta-
bility can be found in Refs. 17–19. Even though the wall
mode instability is likely to be very relevant in practical
applications, very few studies have been carried out on the
wall mode instability,20–23 and all of these studies have been
linear stability calculations. A linear stability analysis is in-
adequate because it only provides the transition Reynolds
number but provides no information about the nature of the
bifurcation after transition. In the present analysis, we
present the first finite amplitude stability calculation of the
wall mode instability in the flow past flexible surfaces. This
is a first step toward the full nonlinear analysis of the wall
modes in flow past compliant surfaces. The results of the
present analysis provide the nature of the initial bifurcation
and have the potential to provide further insights into the
high Reynolds number transition and drag reduction process
in the flow past soft materials.

Previous studies on wall mode instability have been re-
stricted to the linear stability analysis of a flow past a solid
surface which has been modeled as a linear elastic medium.
The generalization of the classical linear elastic constitutive
equation is the neo-Hookean rheological model valid for fi-
nite displacement gradients, featuring additional stresses
nonlinear in solid strain.24 Recently, many linear stability
analyses have been revisited for the neo-Hookean description
of the deformable medium, motivated by the finding of
qualitatively different modes excited by the nonzero normal-
stress difference present in the constitutive model.25–29 There
are two principal objectives of the present analysis: the use
of the neo-Hookean constitutive relation for the solid and the
weakly nonlinear analysis to determine whether the instabil-
ity is of a super- or subcritical nature by calculating the finite
amplitude correction to the linear growth rate in the Landau
equation. The nonlinear contribution to the growth rate, the
first Landau constant, is calculated numerically for a wide
range of Reynolds numbers covering the regimes Re�1, the
intermediate Reynolds number, and Re�1. The behavior in
the regime Re�1 is also analyzed using the asymptotic
analysis to verify the numerical results and also to provide
the scalings of various quantities with respect to the Rey-
nolds number.

II. PROBLEM FORMULATION

The system consists of an incompressible Newtonian
fluid with density � and viscosity � occupying the domain
0�y��R. An incompressible deformable solid medium with
thickness HR, shear modulus G, and density � is placed be-

neath the fluid. For simplicity the density of solid is assumed
to be the same as that of the flowing fluid. This is a reason-
able assumption for deformable walls made up of aqueous
polymeric gels, like the ones used in the experiments,17–19

where the densities of the fluid and the gel are comparable.
In the experiments by Muralikrishnan and Kumaran,18 the
solid-to-fluid density ratio was 1.02. The rigid wall at y�

=R is set moving in the x direction with velocity V and the
elastic solid medium is anchored at the bottom plate at
y�=−HR which is held stationary. The base flow configura-
tion and the coordinate system are shown in Fig. 1. Here and
in what follows, the quantities with a superscript � are di-
mensional and the ones without the superscript are dimen-
sionless unless stated otherwise. For a high Reynolds number
flow, we adopt the inviscid scalings where the velocity is

scaled with �G /�, distance with R, and time with R�� /G,
and pressure and stresses in fluid as well as in solid wall are
scaled with G. The dimensionless fluid continuity and mo-
mentum balance equations are

� · v = 0, �1�

�tv + v · �v = � · � , �2�

where v denotes the fluid velocity field and the fluid stress
tensor is of the form

� = − pfI +
�

Re
��v + ��v�T� , �3�

where pf is the fluid pressure, I is the identity tensor, and
superscript T indicates the transpose. The Reynolds number
is defined as Re=�VR /� and �=��V2 /G is the dimension-
less top plate velocity.

The flexible medium is modeled as an incompressible
neo-Hookean elastic solid continuum. The neo-Hookean
model is a generalization of the linear elastic model used by
Shankar and Kumaran22,23 and incorporates the finite dis-
placement gradient in the solid. This model has been used in
the previous studies of linear stability analysis by Gkanis and
Kumar,25,26 although they preferred to use the Lagrangian
description to model the solid dynamics against the Eulerian
framework considered in the present analysis. In the Eulerian
description, the dynamics of the solid wall is described by a
displacement field u, given by the displacement of a particle
from an initial reference configuration X to a configuration x
at any time t:

FIG. 1. Schematic diagram of plane Couette flow over a flexible surface
showing the dimensional coordinate system.

094109-2 P. Chokshi and V. Kumaran Phys. Fluids 20, 094109 �2008�

Downloaded 01 Jan 2011 to 203.200.35.31. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions



x = X + u�x,t� . �4�

The deformation tensor in spatial configuration is given by

f =
�X

�x
= �I − �u� . �5�

The mass conservation condition for an incompressible solid
is given by either

Det f = 1 �6�

or

� · vg = 0, �7�

where Det indicates the determinant and vg is the dimension-
less Eulerian velocity field in the solid medium given by

vg = �tu + vg · �u . �8�

Both the above mass balance equations result in the follow-
ing continuity condition:

�xux + �yuy − �xux�yuy + �xuy�yux = 0. �9�

The dimensionless momentum balance equation for the solid
medium is

�tv
g + vg · �vg = � · � . �10�

The total stress tensor in the gel comprises an isotropic gel
pressure and an elastic contribution proportional to the strain
�e�. As the gel is considered to be a neo-Hookean elastic
solid, the viscous dissipation proportional to the strain rate
�ė� is ignored in the present analysis. The constitutive rela-
tion for the dimensionless stress, scaled with the shear modu-
lus G, is

� = − pgI + 2e . �11�

The dissipative contribution to the total stress tensor, which
is given in the dimensionless form as ��g /���� /Re�ė, is pro-
portional to Re−2/3, as � for the wall modes scales as Re1/3 in
the limit Re�1. Therefore, the viscous stresses due to the
gel viscosity �g are small and hence not accounted in the
present analysis of wall mode instability. The strain tensor in
the neo-Hookean elastic solid is given by24

e = 1
2 �I − fT · f� �12�

or

eij =
1

2
� �ui

�xj
+

�uj

�xi
−

�uk

�xi

�uk

�xj
� . �13�

Here the terms quadratic in displacement gradient are the
finite deformation stresses specific to the neo-Hookean
model.

For the steady-state base flow shown in Fig. 1, the fluid
velocity and the gel displacement field are

v = ��y,0,0� ,

u = � �2

Re
�y + H�,0,0	 ,

where �, the dimensionless velocity of the top plate, is the
fluid shear rate. The stresses in the fluid and the gel medium
are

�̄xy =
�2

Re
, �̄xx = − p̄f, �̄yy = − p̄f , �14�

	̄xy =
�2

Re
, 	̄xx = − p̄g, 	̄yy = − p̄g −

�4

Re2 . �15�

In addition to v̄x=� at y=1 and zero displacement for the
grafted gel at y=−H, the base flow solution also satisfies the
normal and tangential velocity and stress continuity condi-
tions at the fluid-gel interface, which, for the undisturbed
flow, is flat at y=0. The nonzero value of the first normal-
stress difference 	̄xx− 	̄yy =�4 /Re2 for the elastic solid is a
consequence of the neo-Hookean constitutive model which
retains the terms quadratic in displacement gradient �2 /Re.
This additional stress, which was absent in the previous
analyses of linear viscoelastic solid,13,22,23 is known to influ-
ence the linear stability of the base state in the limit Re�1,
as found by Gkanis and Kumar.25

III. WEAKLY NONLINEAR ANALYSIS

In the temporal stability analysis, a normal mode pertur-
bation is superimposed on the steady base flow, and the tem-
poral rate of change in amplitude is calculated using the per-
turbative expansion of nonlinearities with disturbance
amplitude as a small parameter. Apart from the convective
nonlinearities in the fluid governing equation, the mass and
momentum balance equations for the neo-Hookean solid also
admit terms nonlinear in displacement gradients. Moreover,
the nonlinearities also arise from the fluid-solid interface
boundary conditions.30 The occurrence of nonlinear terms in
the boundary conditions is elucidated first. While the inter-
face in the undisturbed flow is flat at y=0, its position in the
perturbed flow is different and it has to be obtained as a part
of solution. As illustrated schematically in Fig. 2, a material
point �x ,0� on the undisturbed interface moves to a position
�x+
 ,�� due to the perturbations, where 
 and � are Lagrang-
ian displacements of the material point at the interface. The
matching conditions at the perturbed interface are

�t · v�
x+
,� = �t · vg�
x+
,�, �16�

�n · v�
x+
,� = �n · vg�
x+
,�, �17�

�t · � · n�
x+
,� = �t · � · n�
x+
,�, �18�

FIG. 2. Schematic illustrating the perturbed fluid-solid interface.
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�n · � · n�
x+
,� = �n · � · n�
x+
,�, �19�

where n and t are the unit vectors normal and tangent to the
perturbed interface �see Fig. 2� defined as

n =
− ���/�x�ex + ey

�1 + ���/�x�2
, t =

ex + ���/�x�ey

�1 + ���/�x�2
. �20�

The surface force due to interfacial tension is ignored in the
present study. Denoting by F and G the fluid and gel quan-
tities respectively, the interface conditions have the following
generic form:

F
x+
,� = G
x+
,�, �21�

where 
 and � are obtained as a part of the solution. In a
weakly nonlinear analysis, the amplitude of all the perturba-
tion quantities is assumed to be small but finite. Conse-
quently, the quantities at the perturbed interface �x+
 ,�� can
be approximated by the Taylor expansion about their values
at the unperturbed interface �x ,0�. The generic expression of
interface conditions �21� can be written as

�F�0 + ��xF�0
 + ��yF�0� + 1
2 ��x

2F�0
2 + 1
2 ��y

2F�0�2

+ ��x�yF�0
� + ¯

= �G�0 + ��xG�0
 + ��yG�0� + 1
2 ��x

2G�0
2 + 1
2 ��y

2G�0�2

+ ��x�yG�0
� + ¯ , �22�

where �¯�0 denote quantities evaluated at the unperturbed
interface �y=0�. Here 
 and � are obtained using the follow-
ing Taylor expansions:


 � ux�x + 
,�,t�

= �ux�0 + ��xux�0
 + ��yux�0� + 1
2 ��x

2ux�0
2 + 1
2 ��y

2ux�0�2

+ ��x�yux�0
� + ¯ , �23�

� � uy�x + 
,�,t�

= �uy�0 + ��xuy�0
 + ��yuy�0� + 1
2 ��x

2uy�0
2 + 1
2 ��y

2uy�0�2

+ ��x�yuy�0
� + ¯ . �24�

The expressions for 
 and � in terms of displacement com-
ponents ux and uy and their derivatives evaluated at y=0 can
be obtained from the above expansions up to a desired order
of perturbation amplitude.

The Eulerian velocity field in the gel �vg� is obtained to
a desired order from the following expressions:

vx
g = �tux + vx

g�xux + vy
g�yux, �25�

vy
g = �tuy + vx

g�xuy + vy
g�yuy . �26�

The theory of weakly nonlinear stability analysis is
briefly discussed next. A two-dimensional perturbation with
small but finite amplitude A1��� with axial wavenumber �
and wavespeed c �frequency �=−�c� is superimposed on the
base state at the critical condition. Here, � is the slow time
scale, which will be defined later. The dimensionless shear
rate for critical stability is �c such that for ���c the flow is
stable to perturbations with any wavelength. The critical
point ��c ,�c� and the frequency of this mode are obtained

from the linear stability analysis. In the neighborhood of �
=�c, the dynamics are assumed to be dominated by the fun-
damental disturbance with wavenumber �=�c and its higher
harmonics generated by the nonlinear self-interactions of the
fundamental mode. In weakly nonlinear theory, the distur-
bance is expanded in a harmonic series and the quantity at
each harmonic is further expanded in an asymptotic series
with disturbance amplitude as a small parameter.31,32 Using
the definition E�x , t�=exp�i��x−ct�� for convenience, a gen-
eral field 
 is expanded as follows:


�x,y,t� = 
̄�y� + �
k=0

�

�
n=k,n�0

�

�A1����n

��Ek
̃�k,n��y� + E−k
̃�k,n�†
�y�� , �27�

where the overbar represents the base flow quantity and the
superscript † denotes the complex conjugate, and 

= �v , pf ,u , pg�. Here and in what follows, k denotes the har-
monic index and n denotes the asymptotic order. The pertur-
bation amplitude A1���, which varies on the slow time scale
�, is a small parameter and is written as A1���=�A���, where
� is the small parameter in the expansion and A���
O�1�. It
should be noted that A1��� is a real quantity since the tem-
poral oscillations are included in E�x , t�.

In the vicinity of the point with critical stability, the dis-
turbance amplitude is assumed to satisfy the following evo-
lution equation known as the Landau equation:

A1���−1dtA1��� = sr
�0� + A1���2sr

�1� + ¯ , �28�

where the constant sr
�0� is the real part of the linear growth

rate s�0� which emerges as an eigenvalue from the classical
linearized stability analysis. The linear growth rate is related
to the wavespeed as s�0�=−i�c. The constant sr

�1� is the real
part of the first Landau constant s�1�. In the neighborhood of
neutral stability, such that �−�c=�2�2�1, where � is the
order of magnitude of disturbance amplitude such that
A1���=�A���, we write sr

�0�= ��−�c��dsr
�0� /d��. The slow

time scale � modifies the time derivative as dt→dt+�2d� .
Hence, there exist multiple time scales in the system: a fast
time scale �t� corresponding to the inverse of the frequency
of oscillations and a slow time scale ��� corresponding to the
rate of growth or decay of the disturbance amplitude. Since
the A1��� is independent of the fast time scale t, the scaled
dynamical equation for the amplitude becomes

A���−1d�A��� = �2
dsr

�0�

d�
+ A���2sr

�1� + ¯ . �29�

The imaginary part of the first Landau constant provides the
correction of the perturbation frequency due to the nonlinear
interactions:

� = si
�0� + �2

dsi
�0�

d�
+ A���2si

�1� + ¯ , �30�

where si
�0� is the frequency of perturbations calculated from

the linear stability analysis �si
�0�=−�cr� and si

�1� is the correc-
tion to the frequency of the perturbations due to self-
interactions generated by the nonlinearities.
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IV. CALCULATION OF THE LANDAU CONSTANT s„1…

The objective of the rest of the analysis is to determine
the first Landau constant s�1� which in turn reveals whether
the nature of wall mode instability is supercritical �sr

�1��0�
or subcritical �sr

�1��0�. Upon expanding all the dynamical
quantities in harmonic-amplitude series, as shown in Eq.
�27�, and extracting the governing equations at various or-
ders, inhomogeneous terms appear in the fluid and the solid
governing equations due to the nonlinearities. Moreover, the
interfacial conditions at the perturbed interface, which are
written in Taylor series expansion about the flat interface as
in Eq. �22�, introduce nonlinearities. In general, the govern-
ing equations and the boundary conditions for the problem at
order �k ,n� contain inhomogeneous terms of order �j ,m�,
where m�n and j+m�k+n. Thus, the harmonic-amplitude
series expansion converts the original nonlinear fluid-gel
problem with unknown interface into a hierarchy of linear
but inhomogeneous problems each to be solved sequentially
beginning with the k=1 and n=1 problem. An observation of
governing equations at different orders shows that the eigen-
functions 
̃�k,n� vanish if k+n is odd. Thus, only a few re-
maining nonzero eigenfunctions need to be calculated. The
first Landau constant, which is the first correction to linear
growth rate, appears in the time derivative with fluid velocity
v and gel velocity vg. In the hierarchy of problems at various
orders, s�1� first appears in the problem with k=1 and n=3.
Therefore, in the weakly nonlinear analysis, where the objec-
tive is to calculate only the first Landau constant s�1�, only
the equations for the �1,1�, �0,2�, �2,2�, and �1,3� contribu-
tions need to be solved. The �1,1� problem is the linear sta-
bility problem which provides the critical point around
which the harmonic-amplitude expansion is carried out, the
�0,2� problem is O�A1

2� correction to the mean flow, often
termed as the base flow distortion, the �2,2� problem is the
first harmonic of the fundamental mode which manifests at
order A1

2, and the �1,3� problem is the nonlinear correction to
the least stable fundamental mode, at which order the Lan-
dau equation �28� is recovered. The governing equations at
various orders and the details of the solution procedure are
provided in Appendix A.

V. RESULTS AND DISCUSSIONS

A. Linear stability analysis

Shankar and Kumaran23 examined the stability of wall
modes using the high Re asymptotics for a plane Couette
flow past a deformable surface described as a linear elastic
solid. In the present work, we extend the asymptotic analysis
to a neo-Hookean elastic solid which accounts for finite
strain deformations. The analysis balances the viscous and
inertial forces in a thin layer adjacent to the fluid-solid inter-
face with thickness O�Re−1/3� times the channel width in the
limit Re�1. The outer fluid layer is considered to be invis-
cid and the disturbance vorticity is confined to the wall layer.
The governing equations are expanded using the small pa-
rameter �=Re−1/3. The fluid shear rate is scaled as �
=�0Re1/3, and the wavespeed is written as c=c0+c1�+¯,
where �0 is of O�1� quantity. The governing equations and

the interface conditions at the leading order and their first
correction are provided, along with the solution procedure, in
Appendix B. The eigenvalue problem at the leading order
provides the leading order wavespeed c0 as the eigenvalue.
There are multiple solutions for c0, all of which have zero
imaginary part. Thus, the leading order solutions do not ex-
hibit an instability. At the next order we get the value of c1,
the first correction to the wavespeed. For all of the multiple
values of c0, the resultant c1 is found to be a complex num-
ber for a given value of �0. Thus, by setting the imaginary
part ci1 to zero, the value of scaled transitional shear rate �0

can be obtained. Transitional �0 for the multiple values of c0

are characterized as different modes belonging to the class of
wall modes. Table I shows the results of the asymptotic
analysis and compares with the solutions obtained by Shan-
kar and Kumaran23 for the Hookean solid for H=5 and �
=1. Since the finite strain terms specific to the neo-Hookean
model are proportional to the base-state strain in the solid
��2 /Re�, which is of magnitude O���, the leading order ei-
genvalue c0 is identical with that for the linearly elastic solid.
However, the finite strain deformations alter the value of c1,
and, hence, the transition parameter �0 is different for the
linear and neo-Hookean models. Unlike for the linear elastic
solid, the upstream traveling disturbances for the neo-
Hookean solid do become unstable, as previously observed
by Gkanis and Kumar25,26 for the creeping flow. Of all the
modes, the most unstable mode, however, is the downstream
traveling mode 1-d and for this mode the value of transition
parameter �0 is found to be only marginally larger than that
for the linear elastic solid.

The asymptotic solutions valid for Re�1 can be contin-
ued to small Reynolds number using the numerical continu-
ation. The governing equations for the numerical solution
are provided in Appendix A 1 and the numerical scheme is
explained in detail in Ref. 15. Using the transitional shear
rate �, the stability diagram is constructed in terms of a flow
independent parameter, �=�GR2 /�2, which is calculated
following the definition �=Re2 /�2. Figure 3 shows the typi-

TABLE I. The asymptotic solutions, leading order wavespeed c0, and tran-
sition parameter �0 for the first four wall modes in the limit Re�1 keeping
H=5 and �=1. The table compares the results for the Hookean solid ana-
lyzed in Ref. 23 with that for the neo-Hookean solid analyzed in the present
study. c0 is the same for both the models. Here, d indicates the downstream
traveling mode and u the upstream traveling mode �which means negative
wavespeed�.

�0

Leading order
wavespeed c0 Hookean solid Neo-Hookean solid

Mode 1-d 1.254 84 0.590 49 0.599 80

Mode 1-u −1.254 84 Stable 1.617 73

Mode 2-d 1.761 42 0.928 11 1.038 49

Mode 2-u −1.761 42 Stable 1.831 98

Mode 3-d 2.335 53 2.628 20 Stable

Mode 3-u −2.335 53 Stable 2.109 86

Mode 4-d 2.933 56 3.806 13 Stable

Mode 4-u −2.933 56 Stable 2.466 18
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cal neutral stability diagram in the Re-� plane for H=5 and
�=1 for the linear elastic solid. This figure, which is repro-
duced from the earlier studies,23 shows the behavior of the
first four wall modes with Reynolds number for the linear
elastic solid. The wall modes are characterized by the scaling
Re
�3/4 for ��1, which follows from the definition �
=Re2 /�2 and the scaling �
Re1/3. The most unstable mode
1 continues to small Reynolds numbers and agrees with the
unstable viscous mode studied by Kumaran et al.13 The cor-
responding diagram for the neo-Hookean solid is illustrated
in Fig. 4 which shows the numerical continuations of the first
two wall modes to small Reynolds numbers in the Re-�
plane for H=5 and �=1. As the two branches of the down-
stream traveling modes merge with each other and both the

upstream traveling modes stabilize as the Reynolds number
approaches zero �indicated by the scaling law Re
�1/2� for
this case, the stability curve is also shown for a different
wavenumber �=2. Here, the continuation of the most un-
stable wall mode to small Reynolds number is demonstrated
by the gray shaded line and the scaling behavior Re
� in
the limit ��1 is shown.

The variation in �0=� Re−1/3 with wavenumber � from
the asymptotic analysis for the first two downstream and
upstream modes is shown in Fig. 5 for H=5. The point of
minimum �0 on this diagram provides the critical parameter
��c Re−1/3� and the critical wavenumber �c. Figure 6 plots
the critical parameter �c Re−1/3 and the critical wavenumber
�c as a function of dimensionless solid thickness H. The
figure compares the asymptotically obtained �c Re−1/3 and �c

�indicated by solid line� with the same calculated numeri-
cally for a finite Reynolds number, Re=104 �� symbols� and
Re=106 �� symbols�. As shown, the asymptotic solution
agrees well with the numerical solution for Re=106, whereas
for Re=104, the asymptotic solution does not hold for H
�1. The figure also compares the asymptotic solution for the
neo-Hookean elastic solid with that for the linearly elastic
solid medium �indicated by � symbols�. Note that �c Re−1/3

obtained for both the models in the limit Re�1 is in good
agreement for all values of H considered in the analysis,
which corroborates the fact that the finite strain deformations
do not play a significant role in the wall mode instability for
Re�1.

Figure 7 shows a numerically obtained stability diagram
showing the critical Reynolds number as a function of the
fluid-solid system parameter � for H=1. The disturbance
wavenumber along the diagram is �c, the critical wavenum-
ber for a given Re. The asymptotically obtained diagram is
shown to hold for Reynolds numbers as low as Re=104. For
comparison, the results obtained for the linearly elastic solid
are also plotted. The wall mode scaling Re
�3/4 smoothly
changes to Re
� for Re�1, in which regime we recover

FIG. 3. The neutral stability curves for different wall modes obtained from
the numerical continuation of the asymptotic results for the linearly elastic
solid for H=5 and �=1.

FIG. 4. The neutral stability curves in the Re-� plane for the first two wall
modes obtained from the numerical continuation of the asymptotic results
for the neo-Hookean elastic solid for H=5 and �=1. The gray shaded line
shows the behavior of mode 1-d for wavenumber �=2. Here, d indicates the
downstream traveling mode and u represents the upstream traveling mode
�which means negative wavespeed�.

FIG. 5. Variation in the scaled transition parameter �0, obtained from the
asymptotic analysis, with the axial wavenumber for the first two modes for
Re�1 and H=5. The point of minimum �0 provides the critical parameters
��c Re−1/3� and �c.
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the unstable viscous instability analyzed by Gkanis and
Kumar.25 Figure 8 shows the similar diagrams for different
values of solid thickness H. For a given fluid-solid system,
characterized by �, the critical Reynolds number decreases
as the thickness ratio H increases following the scaling Rec


H−1/2 for Re�1. Thus, the thick solids are relatively easier
to destabilize by the wall mode perturbations.

An important observation from the linear stability analy-
sis is that for Re�1 the critical shear rate for the neo-
Hookean elastic solid is very close to that for the linear elas-
tic solid for the entire range of solid-to-fluid thickness ratios
considered in the present study. The scalings used in the
asymptotic analysis can provide further insights. The addi-
tional stresses generated by finite strain deformations are
proportional to the base-state strain in solid which is �2 /Re.
As �
Re1/3 in the limit Re�1, the additional neo-Hookean
contribution is O�Re−1/3�. However, since the transition shear
rate is recovered at order Re−1/3, these additional stresses
could influence the transition point. As suggested by the en-
ergy balance arguments of Kumaran,20 the instability occurs
when the transfer of energy from the mean flow to the fluc-
tuations due to the shear work done by the fluid at the inter-
face exceeds the rate of viscous dissipation of energy in the
wall layer. The total energy of perturbations is given by

dE
dt

= C + S − D , �31�

where disturbance energy E is the sum of the kinetic energy
of motion in fluid and solid and the elastic strain energy
stored in the solid. C is the rate of transfer of energy from
mean flow to fluctuations by convective terms in the momen-
tum equations, S is the rate of transfer of energy due to the
shear work done by mean flow at the interface, and D is the
total rate of viscous dissipation of disturbance energy in fluid
as well as solid. When the solid is treated purely as an elastic
medium without taking into account the viscous dissipation,
as in the present work �see Sec. II�, the dissipation occurs

FIG. 6. Effect of solid thickness H on �a� the critical shear rate �c scaled
with Re; �b� the critical wavenumber �c. The critical parameters obtained
from the high Re asymptotics are compared with the numerical results for
Re=104 and 106 and also with the asymptotic solutions for the linear elastic
solid.

FIG. 7. Comparison of the numerical results, the critical Reynolds number
as a function of �, obtained from the present analysis of the neo-Hookean
solid �solid line� with the numerical results for the linear elastic solid ana-
lyzed in Ref. 15 �symbols� for H=1. The dot-dashed line shows the
asymptotic results for the neo-Hookean solid which agrees with the numeri-
cal results for Re�104. The dotted lines are the reference lines showing
different scaling behaviors.

FIG. 8. The critical stability diagram for the neo-Hookean solid showing the
critical Reynolds number as a function of � for different values of solid
thickness H.
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only in the fluid. The rate of shear work done at the interface
is given by the expression

S =� n · � · v
fluiddx +� n · � · vg
soliddx . �32�

At the leading order, we have

S = −� ��xy� vx� + �yy� vy��dx +� �	xy� vx
g� + 	yy� vy

g��dx . �33�

The quantities with primes are the perturbation quantities.
The integrals in the above expression are to be carried out at
y=0 over one wavelength of disturbance along the x direc-
tion. The interface conditions as given in Eqs. �A6�–�A9� are

vy� = vy
g�, vx� + �̄̇uy� = vx

g�, �34�

�yy� = 	yy� , �xy� + N̄1��uy�/�x� = 	xy� . �35�

Here, the base-state shear rate �̄̇=� and the first normal-

stress difference N̄1=�4 /Re2. Using the above equalities, the
expression for the rate of work done at the interface becomes

S = − �
0

2�/�

�̄̇uy�	xy� dx + �
0

2�/�

N̄1��uy�/�x�vx�dx �36�

=
2�

�
��ũy	̃xy

† + ũy
†	̃xy� +

2�

�

�4

Re2 �i�ũyṽx
† − i�ũy

†ṽx� .

�37�

As there is no normal-stress difference, the second term is
absent for the linear �Hookean� elastic solid. Additionally,
the neo-Hookean expression for the shear stress, that is,
	̃xy = i�ũy +dyũx− ��2 /Re�i�ũx, contains an additional term
proportional to �2 /Re not present in the Hookean solid.
Thus, we may split S into the Hookean and the non-Hookean
contributions. The latter is made up of contributions due to
the additional finite deformation stress and due to the jump
in the first normal-stress difference across the interface:

S = SH +
2�

�

�2

Re
��i�ũyũx

† − i�ũy
†ũx�

+
2�

�

�4

Re2 �i�ũyṽx
† − i�ũy

†ṽx� �38�

=SH + S1 + S2. �39�

In the perturbation energy balance Eq. �31�, the contri-
bution due to convection turns out to be subdominant.20 The
instability occurs when the rate of shear work done at the
interface, S, exceeds the rate of dissipation, D. For nondis-
sipating solids, the dissipation occurs only in the fluid and its
expression remains the same irrespective of the type of con-
stitutive model used to describe the solid. We are interested
only in the role of neo-Hookean terms additional to the
Hookean solid, and hence we do not evaluate the dissipation
term D. Since the neo-Hookean contributions influence only
the destabilizing term S, we examine the relative contribu-
tion S /SH=1+S1 /SH+S2 /SH as a function of the Reynolds

number for a neutrally stable wall mode. Figure 9 plots the
ratio of the transition shear rate for the neo-Hookean solid to
that for the Hookean solid, � /�H, and also the relative con-
tribution of the shear work done at the interface, S /SH. For
viscous instability in the limit Re�1, the ratio � /�H�1.
This can be attributed to the higher extent of shear deforma-
tion work at the interface for the neo-Hookean solid. For
Re�1, the ratio � /�H becomes greater than unity because
the surface work contribution to the energy balance becomes
smaller than that for the Hookean solid �S /SH�1�. Since
S /SH=1+S1 /SH+S2 /SH, Fig. 9 shows that this crossover is
largely due to the change in sign of the term S1 /SH, which is
the contribution of the additional finite deformation stresses
in the neo-Hookean solid. Importantly, the contribution of
the normal-stress difference S2 /SH is insignificant at high
Reynolds numbers. It should be noted that this contribution
plays an important role in shortwave instability at Re�1,25

for which case the ratio S2 /SH is found to be positive and
much greater than S1 /SH.

B. Nonlinear stability analysis

1. Numerical analysis

The shooting method used to solve the linear stability
problem provides accurate eigenvalues for any arbitrary Rey-
nolds number. This is possible due to the Gram–Schmidt
orthogonalization of solutions carried out at all grid points.15

However, the estimation of eigenfunctions becomes error
prone for Re�1000, especially for the inhomogeneous prob-
lem at order �2,2�. Hence, we use the spectral method for the
nonlinear stability analysis. The computational technique is
validated by recovering the known results for the viscous
mode instability.33 The formulations and the solution proce-
dure are described in Appendix A.
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FIG. 9. The ratio of quantities for the neo-Hookean elastic solid to that for
the Hookean elastic solid: transition shear rate � /�H and rate of shear work
done at the interface S /SH plotted as a function of Reynolds number for
H=10 and �=0.5. Two neo-Hookean contributions to S /SH, S1 /SH, and
S2 /SH are also plotted. The change in sign of the first contribution leads to
the crossover from destabilizing to stabilizing influence of the neo-Hookean
terms on shear rate.
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The Landau constant s�1�, calculated in the vicinity of the
critical point ��c ,�c�, is plotted in Fig. 10 for a wide range of
Reynolds numbers starting from Re�1 to Re=1010 for H
=10. Here, the broken line indicates that sr

�1��0 and the solid
line is used to represent the case where sr

�1��0. For the vis-
cous instability in the limit Re�1, the real part of the Lan-
dau constant sr

�1� is found to be positive, indicating the sub-
critical nature of the bifurcation, as mentioned by Shankar
and Kumaran.33 In this regime, the Landau constant sr

�1�,
scaled by �G /�R2�1/2, is proportional to Re1/2. For interme-
diate Reynolds numbers, sr

�1� changes its sign three times,
and finally it remains negative for Re�1. Thus, the nature of
bifurcation of the high Reynolds number wall mode instabil-
ity is supercritical. In the regime Re�1, the Landau constant
follows the scaling sr

�1�
Re−1/3. Also shown in Fig. 10 is the
Landau constant sr

�1� for a case when the flexible solid is
modeled as a linear elastic solid �indicated by symbols � for
subcritical and � for supercritical bifurcation�. While the
quantitative value of the Landau constant is somewhat dif-
ferent, the range of Reynolds numbers for which the bifur-
cation is either subcritical or supercritical appears to be the
same for both the solid models. Thus, the neo-Hookean non-
linearities in solid do not influence the changes in the sign of
the Landau constant for varying Reynolds numbers. The bal-
ance between the nonlinearities arising due to the perturbed
interface and the convective nonlinearities in the fluid mo-
mentum equation, therefore, determines the crossover from
the subcritical transition for Re�1 to the supercritical stabil-
ity for Re�1. This knowledge of the response of the nonlin-
earities for a wide range of Reynolds numbers can be useful
in deciding the operating conditions of flow systems depend-
ing on the choice of the nature of bifurcation. For a subcriti-
cal transition, the destabilizing influence of nonlinearities
renders the flow unstable at shear rates lower than �c pre-

dicted by the linear stability. A supercritical bifurcation
makes it possible to achieve the controlled transition through
stable nonlaminar secondary motions.

An important quantity in finite amplitude stability analy-
sis is the equilibrium amplitude for which the linear growth
rate and its nonlinear correction balance each other in the
neighborhood of the critical point. The expression of the
equilibrium amplitude, obtained from the scaled Landau
equation near �=�c �Eq. �29�� by setting dA /d�=0, is given
as

Ae
2 =

− �dsr
�0�/d���2

sr
�1� . �40�

Noting that the actual amplitude A1=�A and �−�c=�2�2, the
equilibrium amplitude is

A1e
2 =

− �dsr
�0�/d���� − �c�

sr
�1� . �41�

For sr
�1��0, A1e

2 is positive for ���c, and for sr
�1��0, the

positive amplitude exists for ���c. For a subcritical bifur-
cation, the equilibrium amplitude represents the threshold
disturbance amplitude of the unstable branch for ���c, and
for a supercritical bifurcation, the equilibrium amplitude rep-
resents the amplitude of the stable nonlaminar states super-
imposed on the laminar flow, thus indicating the extent of
distortion of the mean flow that is realized for ���c. It is
important to note here that the numerical values of the Lan-
dau constant, and hence the values of A1e

2 , depend on the
normalization condition used to obtain the eigenfunctions for
the problem at order �1,1�. In the present study, the normal-
ization condition ũx

�1,1�=1+ i at y=0 has been used. However,
any perturbation quantity of the form A1e
̃�y�e�i�x+s�0�t� will
be independent of the normalization condition employed.
One such quantity of interest is the normal displacement of
the fluid-solid interface given by the following expression,
correct to O���:


uy�
y=0 = A1e
ũy
�1,1�
y=0. �42�

Figure 11 shows the equilibrium amplitude in the form

A1e /��−�c and the amplitude of the normal displacement of
interface in the form 
uy�
y=0 /��−�c as a function of the flow
Reynolds numbers for H=10. Here, the solid lines with sym-
bols represent the case sr

�1��0 and the broken lines with
symbols indicate the regime with subcritical instability. The
equilibrium amplitude diverges when sr

�1� passes through
zero during the three sign changes. The equilibrium ampli-

tude A1e /��−�c scales as Re−1/6 for Re�1; thus A1e
2 / ��

−�c�
� in the same limit. Here, �=Re−1/3 is the thickness of
the wall layer confining the disturbance vorticity. The normal
displacement of an interfacial point is found to decrease pro-
portionally to Re−1/2 in the limit Re�1. Thus, the unstable
flow for ���c reaches the supercritically bifurcated station-
ary state, which resembles more and more the laminar base
state as the flow Reynolds number increases. Figure 12 plots
the real part of the Landau constant against the flow Rey-
nolds number for different values of solid thickness H. For

FIG. 10. Variation in the real part of the Landau constant −sr
�1� with Rey-

nolds number for H=10. The transition parameters along the curve are �c

and �c. The broken line is used when sr
�1� is positive and solid line is used to

represent the case where sr
�1� is negative. The symbols indicate the Landau

constant −sr
�1�, for a linear elastic solid: � for subcritical and � for super-

critical bifurcation.
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all values of H shown in the figure, sr
�1� is negative for high

Re wall modes and scales as Re−1/3 in the limit Re�1.
For a given system parameter �=�GR2 /�2, the equilib-

rium amplitude of the bifurcating state can also be repre-
sented in the form A1e

2 / �Re−Rec�. This is obtained from the
equilibrium Landau equation expanded in the vicinity of the
critical Reynolds number Rec:

0 = �Re − Rec�� dsr
�0�

d Re
�

�

+ A1e
2 sr

�1� + ¯ . �43�

Figure 13 shows the variation in A1e
2 / �Re−Rec� with the flow

independent parameter � for different values of H. The criti-
cal Reynolds number corresponding to these curves was

shown earlier in Figs. 7 and 8. The equilibrium amplitude is
found to decrease proportionally to �−3/4 in the limit ��1.

The variation in sr
�1� with solid thickness H is shown in

Fig. 14 for Re=106. The corresponding critical parameters
�c and �c, about which the Landau constant is evaluated,
were shown earlier in Fig. 6. At this Reynolds number, the
nature of bifurcation of the wall mode instability is super-
critical as sr

�1� is negative for the full range of H shown in the
figure. The value of −sr

�1� decreases proportionally to H−3.7

for H�1, indicating that the stabilizing influence of the non-
linearities diminishes as H increases. The equilibrium ampli-
tude, A1e

2 / ��−�c�, also plotted in the figure, is found to in-
crease as H2.3 for H�1. Thus, for ���c, the linearly
unstable flow due to infinitesimal amplitude disturbance ap-
proaches the supercritically stable state which is O�A1e

2 �

FIG. 11. Variation in the equilibrium amplitude A1e /��−�c ��� and the
amplitude of the normal displacement of the fluid-solid interface

uy�
y=0 /��−�c ��� with the Reynolds number for H=10. The amplitudes
diverge when sr

�1� passes through zero. The broken line is used when sr
�1� is

positive and the solid line when sr
�1� is negative.

FIG. 12. The real part of the Landau constant −sr
�1� as a function of Rey-

nolds number for different values of H: �, H=1; �, H=2; �, H=10; �,
H=50. The respective �c for these curves were shown in Figs. 7 and 8. The
broken line is used when sr

�1� is positive and the solid line when sr
�1� is

negative.

FIG. 13. The equilibrium disturbance amplitude A1e
2 / �Re−Rec� as a function

of system parameter � for different values of H: �, H=1; �, H=2; �, H
=10; �, H=50. The broken line is used for the subcritical bifurcation and
solid line for the supercritical bifurcation.

FIG. 14. Variation in the Landau constant −sr
�1� ��� and the equilibrium

amplitude A1e
2 / ��−�c� ��� with the solid thickness H for Re=106. At this

Reynolds number, sr
�1� is negative for the entire range of H examined. The

dashed-dot lines are the reference lines showing different scaling behaviors.
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away from the Couette flow base state and the extent of
distortion of the laminar mean flow increases as the elastic
solid thickens.

2. Asymptotic analysis

The above discussed results obtained using the numeri-
cal technique can be verified with the help of an asymptotic
analysis in the limit Re�1. The problems at higher orders
leading to the first Landau constant can be solved using
asymptotic analysis in the high Reynolds number limit in a
manner identical to the linear stability analysis at k=1 and
n=1. Only an overview of the analysis is provided here, and
the methodology and the set of governing equations for the
asymptotic analysis are provided and briefly discussed in Ap-
pendix B.

The wall layer thickness ��Re−1/3 provides a small pa-
rameter in which all the perturbation quantities are expanded.
In amplitude-harmonic expansion �27�, we encounter a se-
quence of problems for eigenfunctions 
̃�k,n�, where k is the
harmonic index and n is the amplitude order. The essence of
the asymptotic analysis for the finite amplitude stability is to
expand all the eigenfunctions 
̃�k,n� in a series in the small
parameter �. Thus, the first few terms in the harmonic-
amplitude expansion of a general perturbation,


��x,y,t� = 
̃�1,1�EA1 + �
̃�0,2� + 
̃�2,2�E2�A1
2 + 
̃�1,3�EA1

3

+ ¯ + c.c., �44�

where E�x , t�=exp�i��x−ct�� and c.c. denotes the complex
conjugate, becomes


� = �
̃0
�1,1� + 
̃1

�1,1�� + ¯�EA1

+ ��
̃0
�0,2� + 
̃1

�0,2�� + ¯� + �
̃0
�2,2� + 
̃1

�2,2�� + ¯�E2�A1
2

+ �
̃0
�1,3� + 
̃1

�1,3�� + ¯�EA1
3 + ¯ + c.c. �45�

Here, the subscripts 0 and 1 represent the quantities leading
order in � and their first correction. Likewise, the Landau
equation �28� is written as

A1���−1dtA1��� = �sr0
�0� + sr1

�0��� + �sr0
�1� + sr1

�1���A1���2 + ¯ .

�46�

The above expansion makes an assumption about the relative
order of magnitude of the two small parameters involved in
the series, that is, ��A1

2. The numerical results show that the
equilibrium amplitude A1e

2 / ��−�c� is proportional to Re−1/3

in the limit Re�1 �refer to Fig. 11�. Therefore, in the vicin-
ity of the critical point, such that �−�c�1, we have A1e

2

��. Hence, the asymptotic expansion �46� holds near the
critical point for Re�1. Further, the agreement between the
numerical and asymptotically calculated Landau constants,
to be discussed later in this section, supports the methodol-
ogy of the asymptotic analysis.

The leading order equations for the �1,3� problem pro-
vides O�1� terms in solvability condition �B30� which in turn
gives the leading order Landau constant s0

�1� for which non-
trivial solutions are admitted. It is found that s0

�1� is always
imaginary for all values of solid thickness H considered.

Since the real part sr0
�1� is zero, the leading order solutions do

not suggest the nature of nonlinear bifurcation at the critical
point. Consequently, the first corrections to the governing
equations are solved leading to O��� terms in the solvability
condition, which provides the first correction to the Landau
constant s1

�1�. For all the values of H considered, s1
�1� is found

to be a complex number, s1
�1�=sr1

�1�+si1
�1�i. Thus, the real part of

the Landau constant is recovered at O��� and is given by
sr

�1�=sr1
�1��. It should be recalled here that the real part of the

Landau constant obtained by numerical computations fol-
lows the scaling sr

�1�
Re−1/3 �refer to Fig. 12�, which is con-
sistent with the results of asymptotic analysis. The quantita-
tive agreement between the numerically and asymptotically
computed sr

�1� is shown in Fig. 15. The results from both the
methods are found to be in good agreement for Re�1. The
agreement is reached at lower Reynolds numbers for the
thicker solids. The asymptotic results for the Landau con-
stant s�1� are tabulated in Table II for different values of H
and are compared with the numerical solutions. The agree-
ment is observed to improve with an increase in the Rey-
nolds number, as expected.

VI. CONCLUSIONS

The stability of wall modes in shear flow past a flexible
surface is analyzed using a combination of asymptotic and
numerical methods. The flexible wall is described as an in-
compressible neo-Hookean elastic solid continuum and the
fluid is Newtonian. Both the linear and weakly nonlinear
stability analyses are carried out for the high Reynolds num-
ber wall mode instability. The critical shear rate �c is found
to be close to �c for a linear elastic solid.23 The bifurcation to
the finite amplitude states is examined along the neutral sta-
bility curve using the weakly nonlinear stability analysis.
The nature of bifurcation depends on the nonlinearities
which are of three types. While the fluid governing equations

FIG. 15. Comparison of the real part of the Landau constant −sr
�1� obtained

from the numerical technique �solid lines with symbols� with that estimated
by the asymptotic analysis �broken lines�: �, H=2, �=3; �, H=5, �=1; �,
H=10, �=0.5; �, H=50, �=0.1. The broken lines follow the asymptotic
solution, sr

�1�=sr1
�1� Re−1/3. The numerical results are plotted only when the

bifurcation is supercritical �sr
�1��0�.
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have convective nonlinearities at finite Reynolds numbers,
the solid equations admit nonlinear terms due to the finite
strain neo-Hookean model. Moreover, the matching condi-
tions at the deformed fluid-solid interface, which are ex-
pressed in Taylor series expansions about the unperturbed
interface, result in nonlinearities. In the weakly nonlinear
stability analysis, the first Landau constant s�1� is calculated
for a range of Reynolds numbers and solid thickness H.

In the Stokes flow limit Re�1, sr
�1� is positive, indicating

subcritical bifurcation for the viscous instability. In the inter-
mediate Reynolds number, sr

�1� changes its sign three times
before settling to a negative sign for Re�1. Hence, the bi-
furcation is supercritical for the wall mode instability at high
Reynolds numbers. In the limit Re�1, the results obtained
using the numerical technique are verified using an
asymptotic analysis. The high Reynolds number asymptotics
suggests that the real part of the Landau constant is negative
and it scales as Re−1/3 in the limit Re�1, in agreement with
numerical results. Using the Landau constant, the equilib-
rium amplitude �A1e� is derived in the neighborhood of the
critical point �=�c. Since sr

�1� is negative for the wall mode
instability, the unstable flow at ���c leads to a new station-
ary state which deviates by O�A1e

2 � from the laminar flow
base state. The equilibrium amplitude, in the form A1e

2 / ��
−�c�, is found to be proportional to Re−1/3 in the limit Re
�1. The effect of solid thickness H on the weakly nonlinear
stability shows that the equilibrium amplitude A1e

2 / ��−�c�
increases with the solid thickness and is proportional to H2.3

for H�1, indicating the destabilizing influence of solid
thickness on the wall mode instability.

There are two important results of the present analysis.
The first is that there is not much difference between the
stability results for the linear and the neo-Hookean constitu-

tive relations for the solid. This indicates that the linear elas-
tic model is adequate for capturing both the instability as
well as the secondary flow that develops after instability.
This is in contrast to the limit of low Reynolds numbers,
where it has been found that the results are quantitatively
different for the linear and the neo-Hookean constitutive
relations.25 This indicates that the high Reynolds number in-
stability is less influenced by the details of the solid consti-
tutive relations than the low Reynolds number instability. In
addition, we have shown that the asymptotic analysis used to
identify the scalings in the linear stability problem can be
used to obtain scalings for the equilibrium amplitude in the
nonlinear analysis as well.

The second important result is that the wall mode insta-
bility in the flow past a flexible surface is a rare example of
a shear flow instability where the bifurcation is supercritical.
The Tollmien–Schlichting instability in the flow through a
rigid channel is subcritical, while the flow through a pipe
does not become unstable in the linear stability analysis. The
supercritical nature of the bifurcation could be of importance
in two respects. First, if the transition Reynolds number for
the wall mode instability is lower than that for the transition
to turbulence in a rigid channel, the flow after transition
would have very different characteristics from a turbulent
flow. The transition to turbulence would now depend on the
instability of the stationary state that is generated due to the
wall mode instability, and the Reynolds number for this
could be different from that for a laminar flow past a rigid
surface. In addition, the increase in drag would be continu-
ous when the wall mode instability sets in because the bifur-
cation is supercritical. This is in contrast to the discontinuous
increase in drag which is a consequence of the transition to
turbulence. Second, even if the transition to turbulence takes
place at a Reynolds number lower than the critical Reynolds
number for the wall mode instability, the wall mode instabil-
ity could still influence the turbulent flow because it is con-
fined to a thin layer at the wall in the limit of high Reynolds
numbers. In this case, the near wall vortical structures that
form, and their bursting, could be affected by the secondary
flow generated by the wall mode instability. A question of
importance is whether this would increase or reduce the drag
in the turbulent flow.

APPENDIX A: SOLUTION PROCEDURE

1. The „1,1… problem

The disturbance with harmonic index k=1 and amplitude
order n=1 is the fundamental mode and the problem at this
order corresponds to the linear stability problem. The dimen-
sionless fluid governing equations at this order are

i�ṽx
�1,1� + dyṽy

�1,1� = 0, �A1�

i���y − c�ṽx
�1,1� + �ṽy

�1,1� = − i�p̃f
�1,1� +

�

Re
�dy

2 − �2�ṽx
�1,1�,

�A2�

TABLE II. Comparison of the first Landau constant s�1� obtained from the
asymptotic analysis with that evaluated by the numerical technique for dif-
ferent sets of parameters H and �. The asymptotic analysis furnishes the
Landau constant in the form s�1�=si0

�1�+ �sr1
�1�+si1

�1�i�Re−1/3. The real part of the
leading order Landau constant sr0

�1� is found to be zero.

Re Asymptotic Numerical

H=5, �=1.0

si0
�1�=−0.544 655, sr1

�1�=−126.878 789, si1
�1�=−3.022 155

105 −2.733 520−0.479 545i −1.947 864+0.945 570i

107 −0.588 919−0.558 683i −0.616 241−0.219 891i

109 −0.126 878−0.547 677i −0.139 081−0.482 549i

H=10, �=0.5

si0
�1�=−0.068 083, sr1

�1�=−9.822 605, si1
�1�=−5.214 123

105 −0.211 622−0.180 417i −0.187 606+0.046 145i

107 −0.045 592−0.092 284i −0.049 296−0.043 800i

109 −0.009 823−0.073 297i −0.010 869−0.062 743i

H=50, �=0.1

si0
�1�=−0.000 545, sr1

�1�=−0.027 027, si1
�1�=−0.012 143

105 �−5.822 790−8.065 795i��10−4 �−5.745 253−2.683 160i��10−4

107 �−1.254 482−6.013 242i��10−4 �−1.367 060−4.804 367i��10−4

109 �−0.270 270−5.571 033i��10−4 �−0.300 701−5.306 324i��10−4
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i���y − c�ṽy
�1,1� = − dyp̃f

�1,1� +
�

Re
�dy

2 − �2�ṽy
�1,1�, �A3�

where dy =d /dy, �=��V2 /G is the dimensionless top plate
velocity, and Reynolds number Re=�VR /�. The mass and
momentum conservation equations for the neo-Hookean
solid medium are

i�ũx
�1,1� + dyũy

�1,1� + i�
�2

Re
ũy

�1,1� = 0,

− �2c2ũx
�1,1� − �2c2 �2

Re
ũy

�1,1�

=− i�p̃g
�1,1� + ��dy

2 − �2�ũx
�1,1� − i�

�2

Re
dyũx

�1,1� + �2 �2

Re
ũy

�1,1�	 ,

�A4�

− �2c2ũy
�1,1� = − dyp̃g

�1,1� + ��dy
2 − �2�ũy

�1,1� − i�
�2

Re
dyũy

�1,1�

+ �2 �2

Re
ũx

�1,1� − 2
�2

Re
dy

2ũx
�1,1�	 ,

where c is the complex-valued disturbance wavespeed, such
that the linear growth rate s�0�=−i�c. The overall solid gov-
erning equation, upon eliminating the pressure, is

�dy
4 + 2i�

�2

Re
dy

3 − �2�2 +
�4

Re2�dy
2 − 2i�3 �2

Re
dy

+ �4�1 +
�4

Re2�	ũy
�1,1� + �2c2�dy

2 − �2�ũy
�1,1� = 0.

�A5�

The boundary conditions for this problem include ṽy
�1,1�

= ṽx
�1,1�=0 at y=1 and ũy

�1,1�= ũx
�1,1�=0 at y=−H. At the per-

turbed fluid-solid interface, the Taylor expansion of the in-
terfacial continuity conditions results in the following condi-
tions to be enforced at y=0:

ṽy
�1,1� = − i�cũy

�1,1�, �A6�

ṽx
�1,1� + �ũy

�1,1� = − i�cũx
�1,1� − i�c

�2

Re
ũy

�1,1�, �A7�

�

Re
�dyṽx

�1,1� + i�ṽy
�1,1�� = �dyũx

�1,1� + i�ũy
�1,1� − i�

�2

Re
ũx

�1,1��
− i�

�4

Re2 ũy
�1,1�, �A8�

− p̃f
�1,1� + 2

�

Re
dyṽy

�1,1� = − p̃g
�1,1� + 2�dyũy

�1,1� −
�2

Re
dyũx

�1,1�� .

�A9�

Equation �A6� is the normal-velocity continuity condition at
the fluid-solid interface. Equation �A7� gives the tangential-
velocity continuity condition, wherein the second term on the
left-hand side is due to a jump in mean flow shear rate across
the interface. The right-hand side is the expression for the

Eulerian velocity field in the solid which contains a base-
fluctuation coupling term due to the finite displacement gra-
dient ��2 /Re� in the base state. The tangential-stress conti-
nuity is given by Eq. �A8�. Here, the last term on the right-
hand side is due to a jump in normal-stress difference across
the interface. As shown in Sec. II, the neo-Hookean solid
exhibits nonzero first normal-stress difference, 	̄xx− 	̄yy

=�4 /Re2, for the plane shear flow. This normal-stress differ-
ence contributes to the perturbation tangential-stress due to
the nonflat interface. Equation �A9� is the normal-stress con-
tinuity condition. The fluid-solid interfacial tension is ig-
nored. Importantly, all the terms containing �2 /Re on the
right-hand side of the above conditions are due to the finite
strain deformations permissible in the neo-Hookean model.
These terms are absent for the linear viscoelastic gel
model.23

First, the eigenvalue c is obtained using the shooting
technique. The numerical technique is discussed in detail in
Ref. 15 and has been used previously.20 The transition value
of fluid shear rate � for the onset of instability is obtained by
setting the imaginary part of the wavespeed ci to zero. For
the weakly nonlinear stability analysis, the eigenfunctions
corresponding to the most unstable wall mode are obtained
using the Chebyshev collocation method. An additional “nor-
malization” condition is required, which we specify here as
ũx

�1,1� 
y=0=1+ i. Thus, the eigenfunctions and all the subse-
quent results including the value of the Landau constant s�1�

are specific to the given normalization condition.

2. The „0,2… and „2,2… problems

The problem with harmonic index k=0 and amplitude
exponent n=2 represents the correction to the mean flow due
to nonlinear interactions and the one at order k=2 and n=2 is
the first harmonic of the fundamental mode. The governing
equations for the �0,2� and �2,2� problems are similar to the
expressions for the �1,1� problem with wavenumber � being
replaced with 0 and 2�, respectively. In addition, the inho-
mogeneous terms containing the eigenfunctions of the �1,1�
problem appear in the right-hand side of the governing equa-
tions for the fluid �Eqs. �A2� and �A3�� and the solid dynam-
ics �Eqs. �A4� and �A5��. The inhomogeneities arise due to
the nonlinearities present in these equations. The inhomoge-
neous equations are solved using the no-slip conditions at the
top and bottom plates and the matching conditions at the
perturbed interface, which are expanded about the flat inter-
face. As the Taylor expansion results in nonlinear terms, the
interface conditions also carry the inhomogeneities in terms
of the eigenfunctions of the �1,1� problem.

3. The „1,3… problem

The problem at order k=1 and n=3 is O�A1
2� correction

to the fundamental mode. It features the variation in
amplitude with slow time scale A1���. Thus, the Landau
equation �28� is recovered at this order. The fluid governing
equations are

i�ṽx
�1,3� + dyṽy

�1,3� = 0, �A10�
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− i���y − c�ṽx
�1,3� − �ṽy

�1,3� − i�p̃f
�1,3� + �dy

2 − �2�ṽx
�1,3� = Ix

�1,3�,

�A11�

− i���y − c�ṽy
�1,3� − dyp̃f

�1,3� + �dy
2 − �2�ṽy

�1,3� = Iy
�1,3�. �A12�

The governing equations for the neo-Hookean solid at this
order are

i�ũx
�1,3� + dyũy

�1,3� + i�
�2

Re
ũy

�1,3� = Jc
�1,3�, �A13�

�dy
4 + 2i�

�2

Re
dy

3 − �2�2 +
�4

Re2�dy
2 − 2i�3 �2

Re
dy

+ �4�1 +
�4

Re2�	ũy
�1,3� + �2c2�dy

2 − �2�ũy
�1,3� = J�1,3�.

�A14�

In the above expressions the left-hand sides indicate the in-
homogeneous terms arising due to various nonlinear interac-
tions of the previously solved problems such as the interac-
tion of the fundamental mode �1,1� with �0,2� eigenfunctions
and the interaction of the first harmonic mode �2,2� with the
conjugate of the fundamental mode �−1,1�. The fluid inho-
mogeneities Ix

�1,3� and Iy
�1,3� and the solid inhomogeneity

J�1,3� contain the first Landau constant s�1�.
In addition to the no-slip conditions at the top and bot-

tom walls, the following interface conditions are required to
be satisfied at y=0:

ṽy
�1,3� + i�cũy

�1,3� = �1
�1,3�, �A15�

ṽx
�1,3� + �ũy

�1,3� + i�cũx
�1,3� + i�c

�2

Re
ũy

�1,3� = �2
�1,3�, �A16�

�

Re
�dyṽx

�1,3� + i�ṽy
�1,3�� − �dyũx

�1,3� + i�ũy
�1,3� − i�

�2

Re
ũx

�1,3��
+ i�

�4

Re2 ũy
�1,3� = �3

�1,3�, �A17�

− p̃f
�1,3� + 2

�

Re
dyṽy

�1,3� + p̃g
�1,3� − 2�dyũy

�1,3� −
�2

Re
dyũx

�1,3��
= �4

�1,3�. �A18�

Here, the inhomogeneities �1
�1,3� and �2

�1,3� contain the varia-
tion in A��� with � as the material time derivative of dis-
placement is taken to obtain the solid velocity.

The governing equations and boundary conditions dis-
cretized using the Chebyshev collocation scheme are ex-
pressed schematically as

M� = ��1,3�, �A19�

where 
 denotes the �1,3� eigenfunctions at collocation
points. Since the left-hand sides of the fluid and solid gov-
erning equations as well as the interface boundary conditions
are similar to the ones encountered in the �1,1� problem, the
matrix M for the present problem is identical to that for the
linear problem �k=1, n=1�. From the linear stability analy-

sis, M is known to be singular. Therefore, the inhomoge-
neous �1,3� problem does not exhibit a unique solution and
the Fredholm solvability condition should be satisfied for the
�1,3� problem to have nontrivial solutions. In order to formu-
late the solvability criterion, we need the solution of the ho-
mogeneous adjoint problem. The adjoint problem is con-
structed by defining the inner product of two vectors � and
� as

��,�� = �
i

�i
†�i, �A20�

where 
i
† is the complex conjugate of 
i. The homogeneous

adjoint problem of original problem �A19� is written as

M�� = 0 , �A21�

where Mij
� =Mji

† is the adjoint of matrix M and � is the non-
trivial solution for the homogeneous adjoint problem which
can be obtained using any additional condition on vector �.
The Fredholm solvability criterion is to make � orthogonal
to the inhomogeneity vector ��1,3�:

��,��1,3�� = 0. �A22�

On substituting the solution of the adjoint function �, the
Landau equation is recovered from the above solvability
condition as, after taking the real part,

A1���−1dtA1��� = sr
�0� + A1���2sr

�1� + ¯ , �A23�

where sr
�1� is the real part of the first Landau constant. The

sign of sr
�1� determines the nature of the bifurcation of the

linear instability in the plane with a finite amplitude. If sr
�1� is

positive the instability is subcritical, whereas if sr
�1� is nega-

tive the instability is of a supercritical nature.

APPENDIX B: ASYMPTOTIC ANALYSIS

In this appendix, the asymptotic analysis to calculate the
first Landau constant s�1� is discussed briefly. The fluid do-
main is split into the wall layer adjacent to the interface and
the inviscid outer layer. Within the wall layer with thickness
��Re−1/3, the ordinate is scaled as y=y0� and the fluid gov-
erning equations in the wall layer are written in terms of
“inner” coordinate y0. For a general problem at order �k ,n�,
the fluid velocity components in the wall layer are expanded
as

ṽw,x
�k,n��y0� = �ṽw,x0

�k,n� + ṽw,x1

�k,n�� + ¯� , �B1�

ṽw,y
�k,n��y0� = ��ṽw,y0

�k,n� + ṽw,y1

�k,n�� + ¯� . �B2�

The velocity and pressure in the outer inviscid region need to
be expanded in the following asymptotic series in order to
achieve a balance in the normal-stress continuity condition at
the interface:

ṽo,x
�k,n��y� = ��ṽo,x0

�k,n� + ṽo,x1

�k,n�� + ¯� , �B3�

ṽo,y
�k,n��y� = ��ṽo,y0

�k,n� + ṽo,y1

�k,n�� + ¯� , �B4�
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p̃o,f
�k,n��y� = �p̃o,f0

�k,n� + p̃o,f1

�k,n�� + ¯� . �B5�

The displacement field and the pressure in the elastic solid
are expanded as

ũx
�k,n��y� = �ũx0

�k,n� + ũx1

�k,n�� + ¯� , �B6�

ũy
�k,n��y� = �ũy0

�k,n� + ũy1

�k,n�� + ¯� , �B7�

p̃g
�k,n��y� = �p̃g0

�k,n� + p̃g1

�k,n�� + ¯� . �B8�

The disturbance wavespeed is written as c=c0+c1�+¯ and
the fluid shear rate is scaled with the Reynolds number as
�=�0 /�, where �0 is O�1� parameter. The leading order lin-
ear growth rate is s0

�0�=−i�c0 and its first correction is s1
�0�

=−i�c1. The above expansions are substituted in the govern-
ing equations for the �k ,n� problem and the terms leading
order in � and their next correction are extracted as the gov-
erning equations at respective orders.

For the �1,1� problem, the leading order mass and mo-
mentum conservation equations for the wall layer in the fluid
domain are

i�ṽw,x0

�1,1� + dy0
ṽw,y0

�1,1� = 0, �B9�

�dy0

2 − i��y0 −
c0

�0
�	dy0

ṽw,x0

�1,1� = 0. �B10�

The above momentum balance equation possesses the Airy
functions Ai�z� and Bi�z� as solutions, where the variable z is
defined as z= �i��1/3�y0−c0 /�0�. Of these, the solution Bi�z�
is discarded as it diverges in the limit y0→�.22 In the outer
inviscid zone, the leading order fluid governing equations are

i�ṽo,x0

�1,1� + dyṽo,y0

�1,1� = 0, �B11�

�dy
2 − �2�ṽo,y0

�1,1� = 0, �B12�

p̃o,f0

�1,1� = − �0yṽo,x0

�1,1� − �0ṽo,y0

�1,1�/�i�� . �B13�

An order � correction to the outer layer governing equation
yields

i�ṽo,x1

�1,1� + dyṽo,y1

�1,1� = 0, �B14�

�dy
2 − �2�ṽo,y1

�1,1� = 0, �B15�

p̃o,f1

�1,1� = − �0yṽo,x1

�1,1� − �0ṽo,y1

�1,1�/�i�� + c0ṽo,x0

�1,1�. �B16�

The leading order governing equations in the neo-Hookean
elastic solid are

i�ũx0

�1,1� + dyũy0

�1,1� = 0, �B17�

�dy
2 − �2�2ũy0

�1,1� + �2c0
2�dy

2 − �2�ũy0

�1,1� = 0, �B18�

p̃g0

�1,1� =
1

i�
��dy

2 − �2�ũx0

�1,1� + �2c0
2ũx0

�1,1�� . �B19�

As the finite strain deformation terms specific to the neo-
Hookean model are of the magnitude O���, the solid equa-
tions at the leading order are the same as that for the linearly
elastic solid. The governing equations for the first correction
to the displacements are

i�ũx1

�1,1� + dyũy1

�1,1� + i��0
2ũy0

�1,1� = 0, �B20�

�dy
2 − �2�2ũy1

�1,1� + �2c0
2�dy

2 − �2�ũy1

�1,1� + 2�2c0c1�dy
2 − �2�ũy0

�1,1�

+ �2i��0
2dy

3 − 2i�3�0
2dy�ũy0

�1,1� = 0, �B21�

p̃g1

�1,1� =
1

i�
��dy

2 − �2�ũx1

�1,1� + �2�0
2ũy0

�1,1� − i��0
2dyũx0

�1,1�

+ �2c0
2ũx0

�1,1�� + �2�2c0c1ũx0

�1,1� + �2c0
2�0

2ũy0

�1,1�� . �B22�

The above set of governing equations is solved analyti-
cally by imposing the no-slip boundary conditions at the top
and bottom plates. In addition, the following conditions at
the fluid-solid interface need to be enforced at y=y0=0:

i�c0ũy0

�1,1� + ��ṽo,y0

�1,1� + ṽw,y0

�1,1� + i�c0ũy1

�1,1� + i�c1ũy0

�1,1�� = 0,

�B23�

�0

�
ũy0

�1,1� + �ṽw,x0

�1,1� + �0ũy1

�1,1� + i�c0ũx0

�1,1�� = 0, �B24�

− dyũx0

�1,1� + ���0dy0
ṽw,x0

�1,1� − �dyũx1

�1,1� + i�ũy1

�1,1� − i��0
2ũx0

�1,1���

= 0, �B25�

− p̃o,f0

�1,1� + p̃g0

�1,1� − 2dyũy0

�1,1� + ��− p̃o,f1

�1,1� + p̃g1

�1,1� − 2dyũy1

�1,1�

+ 2�0
2dyũx0

�1,1�� = 0. �B26�

Here, the interface conditions are expanded as the leading
order and the first correction terms. Substituting the analyti-
cal solutions, the above expressions result in a matrix prob-
lem of the form

MC = 0 , �B27�

where C is the vector of constants. The characteristic equa-
tion Det�M�=0 is expanded in small parameter �. The lead-
ing order expression yields the eigenvalue c0, and the first
correction yields an expression of c1. The resultant c0 and c1

and the transition parameter �0 are mentioned and discussed
in Sec. V A. Next, the fluid and solid eigenfunctions for the
�1,1� problem are obtained by solving matrix problem �B27�
using the additional normalization condition ũx0

�1,1� 
y=0=1+ i.
For the �1,3� problem at amplitude order A1e

3 , the gov-
erning equations are similar to the equations for the �1,1�
problem except that the wall layer equation for the fluid and
solid equations contain the inhomogeneities on the right-
hand sides. The Landau constant s�1� appears as one of the
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inhomogeneous terms. We write the Landau constant in an
asymptotic series s�1�=s0

�1�+�s1
�1�+¯. Substituting the ana-

lytical solutions in the interface conditions results in the ma-
trix problem

MC = b , �B28�

where C is the vector of constants and the vector on inho-
mogeneities b contains the leading order and the first correc-
tion Landau constants, s0

�1� and s1
�1�. As matrix M is similar to

the one that occurred in the �1,1� problem, it is known to be
singular. Hence, for the nontrivial solutions to exist, the
Fredholm solvability condition needs to be satisfied, which
requires the solution of the homogeneous adjoint problem

M�� = 0 , �B29�

where Mij
� =Mji

† is the adjoint of matrix M. The solution � is
obtained by using any additional condition on the vector �.
The solvability condition requires the inhomogeneity vector
b to be orthogonal to �, that is,

�b,�� = 0. �B30�

This condition contains leading order terms of O�1� and the
first correction terms of O���. The leading order part gives
the leading order Landau constant s0

�1� and the first correction
part provides the O��� correction to Landau constant s1
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