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The relationship between the parameters in a description based on a mesoscale free energy
functional for the concentration field and the macroscopic properties, such as the bending and
compression moduli and the permeation constant, are examined for an asymmetric lamellar phase
where the mass fractions of the hydrophobic and hydrophilic parts are not equal. The difference in
the mass fractions is incorporated using a cubic term in the free energy functional, in addition to the
usual quadratic and quartic terms in the Landau–Ginsburg formulation. The relationship between the
coefficient of the cubic term and the difference in the mass fractions of the hydrophilic and
hydrophobic parts is obtained. For a lamellar phase, it is important to ensure that the surface tension
is zero due to symmetry considerations. The relationship between the parameters in the free energy
functional for zero surface tension is derived. When the interface between the hydrophilic and
hydrophobic parts is diffuse, it is found that the bending and compression moduli, scaled by the
parameters in the free energy functional, do increase as the asymmetry in the bilayer increases.
When the interface between the hydrophilic and hydrophobic parts is sharp, the scaled bending and
compression moduli show no dependence on the asymmetry in the bilayer. The ratio of the
permeation constant in between the water and bilayer in a molecular description and the Onsager
coefficient in the mesoscale description is O�1� for both sharp and diffuse interfaces and it increases
as the difference in the mass fractions is increased. © 2009 American Institute of Physics.
�DOI: 10.1063/1.3143183�

I. INTRODUCTION

Surfactant solutions are often encountered in industrial
applications. Depending on the relative concentrations of
water and surfactant, these self-assemble into micelles,
lamellar or hexagonal phases. These surfactants mesophases
are anisotropic materials, which have fluidlike disorder in
some directions and solidlike ordering in other directions.1 In
order to be able to accurately model these systems, it is nec-
essary to have a good understanding of the relationship be-
tween the rheology and the structure of the fluid. The evolu-
tion of these systems to an equilibrium state is kinetically
constrained, because the energy required for rearrangements
is much larger than the thermal energy. Even though a per-
fect defect free stack of layers is the final equilibrium state,
real samples are rarely defect free due to kinetic constraints.
These fluids could be ordered by the application of shear.
However, the viscosity �and shear moduli� depends on the
structure and state of ordering in the system, and the state of
ordering depends on the shear history. For this reason, iso-
tropic non-Newtonian constitutive equations2 are not suffi-
cient for these systems and it is necessary to include addi-
tional fields �such as the unit normal to the layers� to
accurately describe their rheology. It is unrealistic to attempt
a microscopic simulation for these fluids, because the lamel-
lar spacing is typically small compared to macroscopic
scales �the distance between layers in lyotropic liquid crys-
talline phases is usually a few hundred angstroms�. Since the

rheology of the liquid depends on the structure, it is difficult
to obtain closed form equations for the density and momen-
tum fields alone in these systems.

It is computationally infeasible to simulate more than a
single bilayer using these molecular dynamics simulations
and so a mesoscale simulation technique is required to bridge
the gap between the molecular simulations and the macro-
scopic applications. For a mesoscale simulation, which re-
solves a few lamellae,3–9 the fundamental dynamical quantity
is the concentration �order-parameter� field, which is the dif-
ference in the concentrations between the hydrophilic and
hydrophobic parts �the sum of the concentrations is a con-
stant if the fluid is incompressible�. However, a mesoscale
simulation procedure is not useful for making quantitative
predictions unless a connection can be made between prop-
erties, which can be measured in molecular simulations, such
as the layer bending modulus and the permeation constant,
and the parameters in the free energy functional. This con-
nection was established for a symmetric lamellar phase
�equal mass fractions of hydrophilic and hydrophobic parts�
recently.9 In the present study, we analyze the same for an
asymmetric bilayer, in which the mass fractions of the hy-
drophilic and hydrophobic parts are not equal.10–14

The order parameter in a mesoscale description is the
concentration field �, which is defined as �= �cw−co� /
�cw+co�, where cw and co are the concentrations of the hy-
drophilic and hydrophobic components �the total concentra-
tion cw+co is a constant for an incompressible system�. The
free energy functional for the order parameter is chosen so
that a periodic modulation in � of wavelength equal to thea�Electronic mail: kumaran@chemeng.iisc.ernet.in.
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layer spacing is obtained at equilibrium. Most earlier
studies4–6,8,9 focused on a “symmetric” free energy func-
tional, for which the mass fractions of the hydrophilic and
hydrophobic parts are equal. This is due because a symmetric
lamellar phase is an equilibrium solution for a Landau–
Ginzburg type free energy functional, which contains terms
proportional to the second and fourth powers of the concen-
tration, in addition to a term that promotes periodic modula-
tion of the concentration field. The relation between the mo-
lecular and mesoscale parameters for a symmetric lamellar
phase has been formulated.9 However, most surfactant lamel-
lar phases are not symmetric and the difference in the mass
fractions of the hydrophilic and hydrophobic parts could be
significant. Surfactant lamellar phases often swell when the
water content is increased and the ratio of the mass fractions
of surfactant and water decreases. Multiscale modeling of
lamellar mesophases will be successful only if this asymme-
try can be incorporated into a mesoscale description. Here,
we examine the formulation of the mesoscale description,
which incorporates the difference in the mass fractions of the
hydrophilic and hydrophobic parts, and examine how this
asymmetry affects the thermodynamic and dynamical prop-
erties of the lamellar phase.

In order to model an asymmetric lamellar phase, a term
proportional to the third power of the concentration is incor-
porated into the free energy functional. The other parameters
in the free energy functional9 are an energy scale �the con-
centration field is defined to be dimensionless as above� and
a parameter r, which determines the sharpness of the inter-
face between the hydrophilic and hydrophobic parts. The
concentration profile is close to a sine wave for r�1, while
it approaches a step function for r�1. The parameter r in the
mesoscale description can be directly obtained from the con-
centration profile of the hydrophilic and hydrophobic parts in
molecular simulations.9 The energy scale in the free energy
functional is related to the molecular simulation using the
fluctuation response of the bilayers. Fluctuations in an or-
dered lamellar phase can be of two types: Layer compression
in the direction perpendicular to the plane of the layers and
layer bending along the plane of the layers. The stress due to
the layer compression is proportional to the product of the
“compression modulus” and the second spatial derivative of
the layer displacement field along the layer normal direction.
For a tensionless membrane, the stress due to bending is
proportional to the “bending modulus” and the fourth spatial
derivative of the layer displacement field. The bending
modulus can be obtained in molecular simulations from the
structure factor for the height-height correlations. Using a
relation between the energy scale in the free energy func-
tional and the bending modulus, the energy scale in the free
energy functional can be extracted from a molecular
simulation.9 Here, we also show how the coefficient of the
cubic term in the free energy functional can be related to the
difference in the mass fractions of the hydrophilic and hy-
drophobic parts.

The dynamics of the system is governed by dynamical
equations for the concentration and velocity fields. The pa-
rameters determining the dynamical response are the On-
sager coefficient for the concentration field and the viscosity

in the fluid momentum equation. In the mesoscale descrip-
tion, there are two dynamical parameters, the Onsager coef-
ficient for the concentration field and the kinematic viscosity
in the fluid momentum equation. The Onsager coefficient is
related to the relative motion of the hydrophilic and hydro-
phobic parts; the equivalent phenomenon at the molecular
scale is the permeation of the water through the hydrophobic
bilayer. The relationship between the Onsager coefficient and
the permeation constant was obtained for a symmetric bi-
layer earlier;9 here we carry out the same calculation for an
asymmetric bilayer and examine the dependence of the ratio
of the permeation constant and Onsager coefficient on the
difference in the mass fractions of the hydrophilic and hy-
drophobic parts.

An important concern in the mesoscale description of
lamellar phases is that the model should predict a zero sur-
face tension, since a lamellar phase has no surface tension.
The free energy functional6,8 for a symmetric bilayer will
have zero surface tension only when the interfacial profile is
sinusoidal. As the interface sharpness increases, it is neces-
sary to add a surface tension term to the free energy func-
tional in order to obtain zero surface tension. The coefficient
of the surface tension term required for zero surface tension
for a symmetric bilayer was calculated earlier.9 Here, we
calculate the coefficient for an asymmetric bilayer.

In Sec. II, the relationship between the parameters in the
free energy functional and the shape of the concentration
profile is first examined. The coefficient of the cubic term in
the free energy functional is related to the asymmetry in the
concentration profile both in the limits of very sharp inter-
faces and very diffuse interfaces.

II. ANALYSIS

The free energy functional for the concentration field in
the mesoscale description, required to produce a lamellar
phase as the equilibrium solution, is

F��� = A� dV�−
�2

2
+

c�3

3
+

�4

4
+

g

2k2 ����2

+
r

2k4 ���2 + k2���2� . �1�

Here, we defined the concentration field � and the param-
eters g and r to be dimensionless, while k has dimensions of
the inverse of length. Parameter A represents an energy den-
sity �energy per unit volume� and sets the energy scale in the
system. The first and third terms on the right side of the
above equation are the usual quadratic and quartic terms in a
Landau–Ginzburg free energy, which results in segregation
in a binary fluid due to the negative sign in the first term,
while the second term is a cubic contribution to the free
energy functional, which accounts for the asymmetry in the
concentration profile. The fourth term on the right side is the
surface tension terms, while the last term promotes the for-
mation of interfaces with wavelength �2� /k�.

The macroscopic dynamics of the lamellar phase is de-
scribed by the local direction of the unit normal to the layers
n, which is perpendicular to the plane of the layers, and the
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local displacement field u, which provides the local displace-
ment of layers from their equilibrium positions. The free
energy changes and the stresses generated depend only on
the variation in u in the directions tangential and normal to
the layers, since the system is at equilibrium when u is zero.
In order to write down the free energy for small displace-
ments, we choose a coordinate system in which the coordi-
nates x and y are locally tangential to the layers and z is
perpendicular to the plane or the layers. The partial deriva-
tives are defined as ux= ��u /�x�, uy = ��u /�y�, and uz

= ��u /�z�; a larger number of subscripts represents repeated
derivatives with respect to the position variables. The free
energy functional for this correct to second order in u can be
written, using symmetry arguments, as

F�u� = F0 +� dV�Buz
2

2
+

G�ux
2 + uy

2�
2

+
K�uxx + uyy + uzz�2

2
� . �2�

Here, the first term in the integral on the right side of Eq. �2�
imposes a penalty for displacements normal to the layers,
which tend to compress or expand the layers, and B is the
layer compression modulus. The second term in the integral
on the right side of Eq. �2� represents the free energy change
due to a change in area along the layers and G is the surface
tension. The third term in the integral on the right is the
change in energy due to bending of the interface and K is the
curvature modulus.

In a real lyotropic liquid crystalline fluid, the surface
tension is zero. Our analysis9 shows that when we do coarse
graining of a free energy functional of the type Eq. �2�, with
g=0, we obtain a nonzero value of G in Eq. �2� in the most
general case. In the analysis, we determine the value of g
=g0, where g0 is a negative real number, to be used in the
simulations so that the macroscopic surface tension is zero.
This is discussed a little later.

A. Concentration profiles

The concentration profile for the equilibrium state is ob-
tained by minimizing F��� with respect to variations in �,

�F

��
= 0. �3�

Using the Euler–Lagrange equations, we obtain the follow-
ing cubic form for the concentration field �:

− � + c�2 + �3 − g�2� + r��4 + 2k2�2 + k4�� = 0. �4�

First, we note that the last term on the left side of Eq. �4� is
zero for a sinusoidal variation with wave number k, therefore
if r is large; we would expect the equilibrium profile to be a
sinusoidal modulation with wave number k. However, there
will be a generation of higher harmonics due to the first two
terms on the left side of Eq. �4� and the most general con-
centration profile will be of the form,

� = �
n=−�

�

�n exp�ınkz� , �5�

where n is an integer. This is inserted into Eq. �4� and the
coefficients of the terms with equal powers of exp�ınkz� are
set equal to zero in order to obtain solutions for �n, which
are a function of r. Since the concentration field is real,
�−n=�n. Also, the coefficient �0 is not zero, in general, be-
cause the concentration profile is asymmetric. The value of
the coefficient �0 is evaluated from the total mass condition,

1

�
�

0

�

dz��z� = �0, �6�

where �= �2� /k� is the wavelength of the concentration
modulation, or the layer spacing. Thus, the first coefficient
�0 is fixed from knowledge of the total concentration. The
determination of the higher coefficients is discussed next.

In the limit r�1, the fifth term on the left side of Eq. �4�
is large compared to the other terms and so we would expect
the solution to be close to a sine wave. However, due to the
condition on the total concentration, a symmetric sine wave
is not a solution of Eq. �4�. We can use an asymptotic expan-
sion in the parameter r−1 as follows. In this expansion, it is
clear that �1 has to be O�1� in order to generate a wave. The
magnitude of the higher terms for n�1 can be obtained by
inserting Eq. �5� into Eq. �4� and examining coefficients of
exp�ınkz� in the resulting equation. Consider the equations
for �0, �1, and �2, that is, the expansion �4� for n=0, n=1,
and n=2. If we retain only the leading order terms in r and c
and assume �2��1 and �0��1, then we obtain

r�0 + 2c�1
2 = 0, �7�

�− 1 − g + 2��0 + �2�c + 3�1
2� = 0, �8�

9r�2 + c�1
2 = 0. �9�

The equations are self-consistent only if �0	�2	r−1/2 and
c	r1/2. A more detailed examination of the hierarchy of
equations reveals that all higher order coefficients, �n for n
	3, are O�r−1� or smaller. The above Eqs. �7�–�9� can be
solved simultaneously to obtain �1 and the coefficient c in
the free energy functional 1. Note that the coefficient �0 has
already been determined from the total mass condition �6�.
Solving Eqs. �7� and �8� simultaneously, we obtain a quartic
equation for �1 as

54�1
4 − 18�1

2�1 + g� − 19��0
2/r� = 0. �10�

This equation can be solved to obtain the solution for �1,

�1
2 =

1 + g

6
+


9�1 + g�2 + 114��0
2/r�

18
. �11�

Using solution �11�, we can obtain c as a function of �0 from
Eq. �7�,

c = −
r�0

2�1
2 , �12�

and �2 from Eq. �9�,
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�2 =
�0

18
. �13�

Note that c	r1/2 and �2	r−1/2, as anticipated earlier. The
higher coefficients in the expansion can be systematically
determined. In particular, we find that

�3 = −
c�2�1

32r
−

�1
3

64r
, �14�

�4 = −
c�2

2 − 2c�1�3 − 3�1
2�2

225r
. �15�

Note that �3	r−1 and �4	r−3/2. In fact, we can show that
�n	r�n−1�/2 in the asymptotic expansion.

In the limit r�1, we expect a sharp interface between
the hydrophilic and hydrophobic regions. The limiting profile
in this limit would be expected to be of the form,

� = 1 for 0 
 �z/�� 
 �a/2� = − 1 for �a/2�


 �z/�� 
 �1 − a/2� = 1 for �1 − a/2� 
 �z/�� 
 1,

�16�

where � is the wavelength of the perturbations. Here, the
bilayer is symmetric for a=0.5 and is asymmetric for a
�0.5. We consider that a�0.5 without loss of generality.
The coefficients �n in Eq. �5� are easily evaluated using the
orthogonality conditions for the cosine functions,

�0 = 2a − 1, �17�

and

�n =
2 sin�an��

�n
, �18�

for n	1. The coefficient c in the free energy functional is
evaluated from the z-independent component of Eq. �4�,

c =
− �0 + �0

3 + 6�0�n=1
� �n

2 + 2�n=1
� �m=1

� ��n�m�−n−m + �−n�−m�n+m�
�0

2 + 2�n=1
� �n

2 . �19�

The limiting value of c for r�1 is given by Eq. �12�. The
limiting value of c for r�1 can be obtained using the
asymptotic expressions for the coefficients �n in Eq. �18�.
Since the sums are convergent for n→�, the numerical ap-
proximation was obtained using 200 terms in the series for
the sums �n=1

� �n
2 and �n=1

� �m=1
� �n�m�−n−m. These are shown

as a function of �0, along with the coefficient c determined
from Eq. 19 in Fig. 1.

The coefficients �n and the concentration profiles were
evaluated numerically for “zero surface tension” case for
which g and r are related as shown in Eq. �4� a little later.

The coefficients are different for the zero surface tension
case because the bilayers described by the free energy func-
tional 1 has a positive surface tension for g=0 and it is
necessary to set g equal to a negative value for the zero
tension state. The coefficients �n were numerically evaluated
as follows. The series in Eq. �4� was truncated at n=8 and
eight simultaneous nonlinear equations were obtained. These
were solved iteratively using the Newton–Raphson proce-
dure in order to obtain the coefficients �n from n=1 to n
=8. In the iterative procedure, the initial guesses for the co-
efficients were chosen as follows. In the limit r�1, the first,
second, and third terms on the left of Eq. �4� can be ne-
glected in comparison to the last term and the solution for the
concentration field is a cosine wave with wave number k.
The coefficient �0 is determined by the asymmetry in the
bilayer from Eq. �6�, while the initial guesses for coefficients
�1, �2, and the coefficient c in the free energy functional �1�
are obtained by solving Eqs. �7�–�9�, while the initial guesses
for all other coefficients are set equal to zero. Using these
initial guesses, the equations obtained by inserting Eq. �5� in
Eq. �4� are solved simultaneously using the Newton–
Raphson procedure to determine the coefficients �n. Once
the coefficients for a large value of r=10 are determined, the
parameter r was progressively reduced by factors of 2 using
the solution for a given value of r as the starting guess for
�r /2�, in order to obtain the coefficients �n. These coeffi-
cients are shown as a function of r in Fig. 2. The solutions in
the limit r�1, 11, and 13 require that �0	r−1/2. Therefore,
in Fig. 2, we set �0= �0.25 /r1/2� and �0.5 /r1/2� for r	1, and
�0=0.25 and 0.5 for r�1. The concentration profiles ob-
tained for different values of r are shown in Fig. 3. As an-
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ψ
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∑
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ψ
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ψ
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ψ
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FIG. 1. The summations �n=1
200�n

2 �dashed line� and �n=1
200�m=1

200 �n�m�−n−m

�dotted line� using the coefficients �n in Eq. �18�, along with the coefficient
c �solid line� determined from Eq. �19�, as a function of �0.

224905-4 V. Kumaran J. Chem. Phys. 130, 224905 �2009�

Downloaded 08 Nov 2010 to 203.200.35.31. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



ticipated, the concentration profile is close to a sinusoidal
profile for r	1, but becomes close to a step profile as r
decreases.

B. Bending and compression moduli

The layer compression and bending moduli are extracted
from the free energy functional, Eq. �1�, using a small per-
turbation about the equilibrium solution of the form

� = �
n=−�

�

�n exp�ınk�z − u�x,y,z,t��� , �20�

where u is the layer displacement field in the z direction. The
above expansions are inserted into the free energy functional
�1�, expand in a series in small u, and include terms that are
quadratic in u and its derivatives. Further, we assume that the
length scale for the variation in the u field is large compared
to the layer spacing �= �2� /k�. If we integrate over lengths

comparable to the � to obtain a coarse-grained free energy
functional, all terms in the free energy functional propor-
tional to exp�ımkz� for m�0 will average to zero. Then, we
will be left only with terms which do not have any modula-
tion over distances comparable to �; we recover a free en-
ergy functional of the form �2�. The details of the calculation
are given in an earlier publication9 and the final results for
the constants B, K, and G are

B = A �
n=−�

�

�2rn2�3n2 − 1� + gn2��n
2,

K = A �
n=−�

�

�rn2/k2��n
2, �21�

G = A �
n=−�

�

�2rn2�n2 − 1� + gn2��n
2.
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FIG. 2. The coefficients ��n as a function of the parameter r. � denotes �1,
� denotes �2, � denotes �3, � denotes �4, and � denotes �5 for an
asymmetric bilayer with zero surface tension with �0= �0.25 /r1/2� for r	1
and �0=0.25 for r�1 �a�, and �0= �0.5 /r1/2� for r	1 and 0.5 for r�1 �b�.
The bold symbols and dashed lines on the left show the asymptotic values
for r�1 form Eq. �18�. The line on the right shows the asymptotic value for
�1, for r�1.
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FIG. 3. The concentration � as a function of distance z for different values
of the parameter r for an asymmetric bilayer with �a� �0=0.25 and �b� �0

=0.5. Solid line denotes r=1, dashed line denotes r=10−1, dotted line de-
notes r=10−2, and dot-dash line denotes r=10−3.
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The surface tension in the macroscopic description has
contributions from both the term proportional to r and the
term proportional to g in the free energy functional �1�,
whereas the bending modulus depends only on r. In order to
achieve a tensionless state, it is necessary to construct the
free energy functional with the parameter g chosen, so that

g = g0 = −
�n=−�

� 2rn2�n2 − 1��n
2

�n=−�
� n2�n

2 . �22�

For this choice of parameters, the bending modulus would be

B = A �
n=−�

�

4rn4�n
2. �23�

Figure 4 shows −g0 as a function of r for both the symmetric
and asymmetric bilayers. In the limit r�1, we found that
g0r1/2 for both symmetric and asymmetric bilayers. The
physical reasons for the scaling behavior of g0 in the limits
r�1 and r�1 is as follows:

�1� For a perfect step function �r=0�, the coefficients �n

decrease proportional to �1 /n�. However, when r is
small but nonzero, Eq. �18� is valid only for n�r−1/4.
This is because Eq. �18� was obtained assuming that the
term proportional to r in Eq. �4� can be neglected. For a
small but nonzero value of r, the term proportional to r
on the left side of Eq. �4� becomes comparable to the
other terms for n	r−1/4. This can be adequately repre-
sented by a cutoff at n	r−1/4 of the series expansion
�22�, when �n is given by Eq. �18�. When this upper
limit for n is inserted into Eq. �22�, it can easily be
deduced that g0r1/2 in the limit r�1. This scaling
behavior is reproduced by the numerical calculations in
Fig. 4. Figure 4 also shows that the numerical value of
g0 does not change very much as �0 changes in the
limit r�1. To a very good approximation, we obtain
the following empirical relation in the limit r�1:

g0 = − �0.44 � 0.018�r1/2. �24�

�2� In the limit r�1, we find that the magnitude of g0

decreases proportional to r−1 for a symmetric bilayer. In
this case, �n=0 for all odd n, �1	1, and �3r−1. g0 in
Eq. �22� does not contain a contribution due to �1 and
the first nonzero contribution is due to �3, which is
proportional to r−1. In the case of an asymmetric bi-
layer, there is a nonzero contribution due to �2, which
is proportional to r−1/2 from Eqs. �7�–�9�. Due to this,
g0 tends to a constant value in the limit r�1. This
value is, however, numerically small for both the asym-
metric bilayers with �0=0.25 and 0.5 considered here.

In the limit r�1, Eqs. �13�–�15� indicate that �n

	r�−�n−1�/2�. From Eq. �21�, the bending and compression
moduli are both proportional to Ar in this limit,

B 	 �Ar� ,

�25�
K 	 �Ar/k2� .

In the limit r�1, Eq. �18� indicates that �nn−1. However,
this scaling is cut off due to the gradient terms in expression
�4� for the concentration field. For g	r1/2, it was shown in
the previous paragraph that the upper limit for nc, which
scales as nc	r−1/4 and the bending and compression moduli
can be calculated using this upper cutoff for n, are

B = A�
n

4rn4�n
2 	 Arnc

3 	 Ar1/4, �26�

K = A�
n

�r/k2�n2�n
2 	 A�r/k2�nc, �27�

	A�r3/4/k2� . �28�

The bending and compression moduli, scaled by �Ar�,
are shown as a function of the r in Figs. 5 and 6 for the zero
surface tension case g=g0, as well as for the case g=0. It is

10-3 10-2 10-1 1 101 102

r

10-4

10-3

10-2

10-1

-g
0

FIG. 4. The variation in −g0 with r, where g0 is the value of g in the free
energy functional �1�, which corresponds to a zero tension state for a sym-
metric bilayer ��� �0= �0.25 /r1/2� for r	1, �0=0.25 for r�1 ���, and
�0= �0.5 /r1/2� for r	1 and 0.5 for r�1 ���.
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FIG. 5. The scaled compression modulus �B / �Ar�� for a symmetric bilayer
���, for an asymmetric bilayer with �0= �0.25 /r1/2� for r	1, and �0=0.25
for r�1 ���, and an asymmetric bilayer with �0= �0.5 /r1/2� for r	1 and
0.5 for r�1 ���. The filled symbols show the results for zero surface
tension, and the filled symbols show the results for g=0. The dashed line on
the left shows a slopes of �0.75.
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observed that both the �B /Ar� and �Kk2 / �Ar�� approach con-
stant values in the limit r�1, as anticipated in Eq. �25�. In
the limit r�1, we found that �B /Ar� and �G /Ar� increase
proportional to r−3/4, while �Kk2 /Ar� increases proportional
to r−1/4, as obtained in Eqs. �26� and �27�. For completeness,
we also show the scaling behavior of the moduli for the case
where g=0. There are several salient features of the variation
in the scaled compression and bending modulus with the
parameter r.

�1� In the limit r�1, there is very little difference in the
compression and bending moduli with the parameter g.
Therefore, the compression and bending moduli are
nearly equal for zero surface tension and for g=g0.
However, there is a significant variation in the bending
and compression moduli with the parameter �0.

�2� In the limit r�1, there is very little variation in the
bending and compression moduli with �0, indicating
that the scaled compression and bending moduli are
largely independent of �0. However, the scaled bending
and compression moduli do depend on g and the
moduli for the zero surface tension case are lower than
those for g=0. Using the data available for r
0.01, we
can obtain empirical correlations for the compression
and bending moduli in the limit r�1. For the zero
surface tension case, the scaled bending and compres-
sion moduli are well represented by the following em-
pirical relation in the limit r�1:

�B/Ar� = �0.296 � 0.006�r−3/4, �29�

�Kk2/Ar� = �0.282 � 0.002�r−1/4. �30�

For the case g=0, the bending and compression moduli
are well represented by the following empirical rela-
tions in the limit r�1,

�B/Ar� = �0.594 � 0.012�r−3/4, �31�

�Kk2/Ar� = �0.326 � 0.005�r−1/4. �32�

Finally, we examine the nonzero value of the surface
tension that would be obtained if parameter g was set equal
to zero in the free energy functional �1�. As already ex-
plained above, a lamellar phase has a zero surface tension
because there is no energy penalty for tilting the bilayers.
However, when the free energy functional �1� is used with
g=0, there is a finite surface tension given in Eq. �21�. It is
of interest to examine whether this nonzero value is large or
small, to determine whether the error due to the assumption
g=0 is significant. The value of the scaled surface tension for
g=0 is shown as a function of r in Fig. 7. It is observed that
the surface tension decreases proportional to r−2 for a sym-
metric bilayer for r�1, as reported earlier.9 However, for an
asymmetric bilayer, the surface tension saturates to a small
nonzero value for r�1. This value is numerically small for
�0= �0.25 /r1/2� and �0= �0.5 /r1/2�, but it is greater than zero,
indicating that an asymmetric bilayer with g=0 has a small
but nonzero surface tension. In the limit r�1, we find that
the scaled surface tension �G /Ar� increases proportional to
r−3/4, as in the case of the symmetric bilayer. The surface
tension shows very little variation in value for �0=0.25 and
0.5 and is well fitted by the approximate relation,

�G/Ar� = �0.179 � 0.007�r−3/4. �33�

C. Dynamics

The model-H equations for binary fluids have been used
to model the mesoscale dynamics of symmetric lamellar
phases.9 Here, a relationship was obtained between the On-
sager coefficient � in the mesoscale description and the per-
meation constant P in the equation for the relative motion
between the fluid and the layers in the macroscopic descrip-
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FIG. 6. The scaled bending modulus �Kk2 / �Ar�� for a symmetric bilayer
���, for an asymmetric bilayer with �0= �0.25 /r1/2�, for r	1 and �0=0.25,
for r�1 ���, and an asymmetric bilayer with �0= �0.5 /r1/2� for r	1 and
0.5 for r�1 ���. The filled symbols show the results for zero surface
tension and the filled symbols show the results for g=0. The dashed line on
the left shows the slopes of �0.25.
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FIG. 7. The scaled surface tension �G / �Ar�� for a symmetric bilayer ���, for
an asymmetric bilayer with �0= �0.25 /r1/2� for r	1 and �0=0.25 for r�1
���, and an asymmetric bilayer with �0= �0.5 /r1/2� for r	1 and 0.5 for
r�1 ���. The dashed line on the left shows a slopes of �0.75, while the
dashed line on the right shows a slope of �2.
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tion. We do not provide the details here, but simply provide
the final expression for the permeability in terms of the On-
sager coefficient,

P =
�

��n=−�
� �n

2� . �34�

In the earlier study of symmetric bilayers,9 it was shown that
the permeation constant in equation P has the same dimen-
sions as the Onsager coefficient in equation �. The ratio
�P /�� can be evaluated in the asymptotic limit r�1 and r
�1 as follows. In the limit r�1, the dominant contribution
to the denominator of Eq. �34� is due to the coefficient �1,
since all higher coefficients are small. Therefore, �P /�� can
be obtained using Eq. �11� for �1 and neglecting all other
coefficients. In the limit r�1, the coefficients �18� can be
used for the coefficients �n, in order to obtain the ratio
�P /��. These limiting values �Fig. 8� are shown as a function
of the asymmetry �0 in Fig. 2. In the limit r�1, the numeri-
cal evaluation of Eq. �34�, using Eq. �18� for the coefficients
�n, shows that �P /�� is exactly equal to 1 independent of �0.
For a symmetric lamellar phase, the ratio of the permeation
constant and the Onsager coefficient tends to a constant
value of 1.5 in the limit r�1, where the amplitudes �n are
given by Eqs. �13�–�15�.

The ratio �P /�� for an asymmetric lamellar phase is
shown as a function of the parameter r for two different
values of �0=0.25 and �0=0.5 in Fig. 9. This ratio varies in
a very narrow range between about 0.7 and 1.5 for all the r
values analyzed here. It is important to note that the ratio
�P /�� remains finite in both limits r�1 and r�1 and shows
a maximum in the intermediate regime for an asymmetric
bilayer. This is in contrast with a monotonic increase for a
symmetric bilayer. In the limit r�1, it is observed that the
value of �P /�� is independent of �0, as expected from Fig. 2.
However, the numerical value does not approach the
asymptotic value �P /��=1.0 even at r=0.001 and it is nec-
essary to go to even lower values of r to get close to the
asymptotic limit.

III. CONCLUSIONS

The relationship between parameters that can be ob-
tained from a molecular simulation, such as the concentra-
tion, profile, bending, and compression moduli, and the pa-
rameters in a mesoscale free energy functional have been
obtained for an asymmetric lamellar phase, in which the
thickness of the water and surfactant layers are not equal.
This follows an earlier study,9 where similar parameters were
obtained for a symmetric lamellar phase. The effect of asym-
metry in the concentration field was incorporated using a
cubic term in the free energy functional. The free energy
functional minimized, and the resulting nonlinear equation
for the concentration field were then expanded in a Fourier
series �Eq. �5��, resulting in a set of simultaneous equations
for the different Fourier modes. These were solved simulta-
neously to obtain the Fourier coefficients �n, as well as the
parameter c in the free energy functional. Due to the pres-
ence of a cubic term in the free energy functional, we find
that all the Fourier coefficients are nonzero for an asymmet-
ric bilayer. This is in contrast with the case of a symmetric
bilayer, where all even Fourier coefficients, �0 ,�2 ,¯ are
zero.

The sharpness of the interface, determined by the param-
eter r in the free energy functional Eq. �1�, plays an impor-
tant role in determining the dynamics of the system. In the
limit r�1, the concentration profile is close to a sine func-
tion. In this case, we see that the maximum asymmetry �dif-
ference in the mass fraction of the hydrophobic and hydro-
philic parts� decreases proportional to r−1/2. This is because
the concentration profile reduces to a perfect sine wave in the
limit r→� and a sine wave is symmetric. This indicates that
the asymmetry in the concentration field, which can be mod-
eled using the free energy functional Eq. �1�, is limited in the
limit r�1, where the interface is very diffuse. There is no
such limitation for the case r�1, where the concentration
profile tends to a series of step functions.

An issue of importance is the requirement, for a lamellar
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FIG. 8. The limiting values in of �P /�� as a function of ��0 /r1/2� for
r�1 �solid line� and as a function of �0 for r�1 �broken line�.
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FIG. 9. The ratio �P /�� as a function of r for the case g=0 for a symmetric
bilayer ��� and an asymmetric bilayer with �0=0.25 ��� and an asymmetric
bilayer with �0=0.5 ���.
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phase, that the surface tension has to be zero. In the free
energy functional, the zero tension state is achieved by in-
corporating a surface tension term proportional to g in the
free energy functional. The surface tension is positive for g
=0 and zero tension is achieved by setting g=g0, where g0 is
negative. For a symmetric bilayer, it was found that g0 de-
creased proportional to r−2 for a diffuse interface in the limit
r�1. For an asymmetric interface, we find that g0 tends to a
finite, but numerically small, value in the limit r�1. The
magnitude of g0 increases as the asymmetry increases. In the
limit r�1 where there is a sharp interface, it is found that
�g0�	r−3/4, and the numerical value of g0 is remarkably in-
sensitive to the asymmetry in the concentration profile.

The bending and compression moduli were determined
in terms of the parameter r, which determines the sharpness
of the interface, and the parameter A, which provides a mea-
sure of the energy per unit volume. In the limit r�1, the
scaled bending and compression moduli for an asymmetric
bilayer are larger than those for a symmetric bilayer. How-
ever, in the limit r�1 where the interface becomes sharp,
there is very little dependence of the asymmetry on the bend-
ing and compression moduli. The permeation constant of the
fluid through the bilayer was also determined in terms of the
Onsager coefficient in the concentration equation in the me-
soscale description. As in the case of symmetric bilayers, the
ratio of the permeation constant and the Onsager coefficient
tends to constant values both for r�1 and r�1 and varies in
a small range between 0.7 and 1.5 in the intermediate re-
gime.

The present analysis shows that the thermodynamic and
dynamical properties of an asymmetric bilayer are sensitive

to the asymmetry in the concentration for diffuse interfaces,
where the concentration profile can be described by a sine
wave. However, for sharp interfaces, the dependence of the
thermodynamic and dynamical properties on the parameters
in the free energy functional is not sensitive to the asymme-
try in the concentration profile.
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