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Dynamics of dense sheared granular flows.
Part 1. Structure and diffusion
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Shear flows of inelastic spheres in three dimensions in the volume fraction range
0.4–0.64 are analysed using event-driven simulations. Particle interactions are
considered to be due to instantaneous binary collisions, and the collision model
has a normal coefficient of restitution en (negative of the ratio of the post- and
pre-collisional relative velocities of the particles along the line joining the centres)
and a tangential coefficient of restitution et (negative of the ratio of post- and pre-
collisional velocities perpendicular to the line joining the centres). Here, we have
considered both et = +1 and et = en (rough particles) and et = −1 (smooth particles),
and the normal coefficient of restitution en was varied in the range 0.6–0.98. Care was
taken to avoid inelastic collapse and ensure there are no particle overlaps during the
simulation. First, we studied the ordering in the system by examining the icosahedral
order parameter Q6 in three dimensions and the planar order parameter q6 in the
plane perpendicular to the gradient direction. It was found that for shear flows of
sufficiently large size, the system continues to be in the random state, with Q6 and q6

close to 0, even for volume fractions between φ = 0.5 and φ = 0.6; in contrast, for a
system of elastic particles in the absence of shear, the system orders (crystallizes) at
φ = 0.49. This indicates that the shear flow prevents ordering in a system of sufficiently
large size. In a shear flow of inelastic particles, the strain rate and the temperature
are related through the energy balance equation, and all time scales can be non-
dimensionalized by the inverse of the strain rate. Therefore, the dynamics of the
system are determined only by the volume fraction and the coefficients of restitution.
The variation of the collision frequency with volume fraction and coefficient of
restitution was examined. It was found, by plotting the inverse of the collision
frequency as a function of volume fraction, that the collision frequency at constant
strain rate diverges at a volume fraction φad (volume fraction for arrested dynamics)
which is lower than the random close-packing volume fraction 0.64 in the absence of
shear. The volume fraction φad decreases as the coefficient of restitution is decreased
from en = 1; φad has a minimum of about 0.585 for coefficient of restitution en in
the range 0.6–0.8 for rough particles and is slightly larger for smooth particles. It is
found that the dissipation rate and all components of the stress diverge proportional
to the collision frequency in the close-packing limit. The qualitative behaviour of the
increase in the stress and dissipation rate are well captured by results derived from
kinetic theory, but the quantitative agreement is lacking even if the collision frequency
obtained from simulations is used to calculate the pair correlation function used in the
theory.

† Email address for correspondence: kumaran@chemeng.iisc.ernet.in
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1. Introduction

Kinetic theories for granular materials exploit the analogy between the motion
of discrete particles in the granular material and the motion of molecules in a
molecular gas. There have been many derivations of constitutive relations for granular
materials. These include approximate approaches that modified the Navier–Stokes
equations by adding a dissipation term due to inelastic collisions in the energy
equation (Savage & Jeffrey 1981; Jenkins & Savage 1983; Lun et al. 1984; Jenkins
& Richman 1985; Kumaran 1998), as well as asymptotic approaches that used
expansions in the inelasticity and the Knudsen number (Sela, Goldhirsch & Noskowicz
1996; Sela & Goldhirsch 1998; Kumaran 2004, 2006a). The important difference
between a molecular gas and the granular flow of inelastic particles is that energy
is not a conserved variable in a granular flow, since energy is dissipated in inter-
particle collisions. It has commonly been assumed that constitutive relations obtained
using kinetic theory are limited in their applicability, because the binary-collision
approximation is inapplicable for dense flows of practical interest in which multi-
body contacts are likely to dominate. However, there is recent evidence (Mitarai &
Nakanishi 2005; Reddy & Kumaran 2007; Silbert et al. 2007) to indicate that the
binary contact approximation is, in fact, valid even for relatively dense flows. The
reasoning for this is as follows: The extent of overlap between particles is determined
by the volume fraction and by the stiffness of contacts between particles. For perfect
hard spheres in which the stiffness tends to infinity, all contacts between particles are
binary contacts even at high volume fraction, provided the material is flowing. As the
stiffness decreases, the number of simultaneous contacts increase. For materials of
practical interest such as sand and glass, it is found that the stiffness of the contacts
is sufficiently high that the particles are in the binary contact regime even when the
volume fraction is as high as 0.56–0.58. The initial simulation studies (Silbert et al.
2001) found multi-body contacts because the stiffness of the contacts were assumed
to be about four orders of magnitude lower than those for real particles in order to
reduce computation time.

There are a number of features observed in the flow down an inclined plane that are
a direct consequence of binary contacts. All components of the stress are proportional
to the square of the strain rate (Bagnold law), and it can be shown that the volume
fraction is a constant in the bulk of the flow. It was shown (Kumaran 2008) that
the constitutive relations derived using the Enskog approximation (Kumaran 2004,
2006a, b) are able to predict all the qualitative features observed in simulations (Silbert
et al. 2001), including the initiation of the flow at a finite angle of inclination, the
decrease in the volume fraction as the angle of inclination is increased, the constant
volume fraction in the bulk, the presence of boundary layers of thickness comparable
to the conduction length where there is a variation in the volume fraction, the
variation of temperature and the minimum height hstop required for a steady flow
for a given angle of inclination. However, there were large quantitative differences
between the theoretical predictions and the simulation and experimental results for
the dependence of the stress and dissipation rate on the strain rate.

Various reasons have been proposed for the differences between theory and
simulations. It has suggested that this is due to errors in the value of the pair
distribution function assumed (Reddy & Kumaran 2007) and due to correlations
in the velocities of colliding particles (Mitarai & Nakanishi 2007). It should be
noted that molecular chaos is assumed while deriving the constitutive relations, so
that the pair distribution function is the product of the single-particle distribution
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functions. Correlations have also been postulated in order to modify the transport
coefficients obtained using kinetic theory (Lois, Lematre & Carlson 2005; Jenkins
2006, 2007). The objective of these have been to obtain profiles that appear similar
to those in simulations, particularly the constant volume fraction in the bulk. Jenkins
(2006, 2007) had to modify the energy dissipation term by postulating a correlation
length in order to obtain profiles that look qualitatively similar to those observed
in experiments. The latter was motivated by evidence that the rate of dissipation
of energy in simulations is much smaller than that predicted using the Enskog
approximation (Mitarai & Nakanishi 2005). Lois et al. (2005) also modified the
energy equation by postulating an additional parameter in the energy equation and
obtained this parameter on the basis of a shear transformation zone theory. However,
the dissipation rate alone does not provide the complete picture, because it has also
been found that the frequency of collisions is higher than that predicted by kinetic
theory in dense flows (Goldschmidt, Beetstra & Kuipers 2002). Therefore, it appears
that the form of the distribution function for the relative velocities is qualitatively
different from that assumed in the Enskog approximation, leading to an increase in
the collision frequency and a decrease in the rate of dissipation of energy. Note that
the collision frequency and the rate of dissipation of energy are proportional to first
and third moments of the distribution of pre-collisional relative velocities along the
line joining the centres of the particles. This has motivated the present study, where
we examine, in detail, the ordering and collision frequency in part 1 and the relative
velocity distribution in part 2 in the shear flow of inelastic particles, using event-driven
simulations.

The objective of the present analysis is to examine the reasons for the quantitative
differences between theoretical predictions and simulation results and to propose
modifications that will provide quantitative agreement. Theories typically use the
Enskog approximation for the velocity distribution function, which states that the two-
particle velocity distribution function is the product of their respective single-particle
velocity distribution functions and the pair correlation function at contact. The pair
correlation function is usually evaluated in simulations from the collision frequency
using the Enskog approximation and in theories is assumed to be the same for a fluid
of elastic spheres at equilibrium in the random state. We use event-driven simulations
of hard-particle systems to determine that these are not good approximations and to
propose modifications. We then verify that these modifications result in quantitative
agreement with simulations and also with previously reported results for the flow of
monodisperse spheres down an inclined plane.

In the present analysis, we also examine the effects of correlations in an indirect
manner. There have been persistent reports in literature about the effects of large
clusters, eddies (Ertas & Halsey 2002) and ‘force chains’ (Campbell 2002, 2005)
which transmit most of the stress in the system. Even within the constraints of the
hard-sphere model, there are reports of long lines of particles undergoing repeated
collisions (like a Newton’s cradle) which transmit stress. Recently, to explain why the
stresses are well described by the Chapman–Enskog procedure whereas the dissipation
rate is not, Jenkins (2006, 2007) proposed that the dissipation rate is influenced by
repeated collisions between particles. These are examined by carrying out simulations
in which we measure the collision frequency and stresses in part 1 and the velocity
distributions for the pre-collisional relative velocity between particles in part 2.
The relative velocity distribution is important because in a dense flow, the stress
transmission and energy dissipation is primarily collisional. If we assume that there
are no long-range correlations between particles, then the stress and dissipation rate
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can be determined from the relative velocity distribution between pairs of colliding
particles for a hard-particle system.

The simulations are exact in the sense that they will contain any correlated
regions that are present in hard-particle systems. However, the pre-collisional relative
velocity between pairs of particles has been averaged over the entire system, with no
biasing towards oriented force chains or correlated regions. Therefore, the stress and
dissipation rate from the relative velocity distribution will be in agreement with the
simulation results only if correlations are restricted to the two-particle level, and there
are no long force chains or correlated regions in the system. If there are correlated
regions such as force chains which transmit most of the stress from one boundary
to another or which reduce energy dissipation rate, these effects will be accurately
captured only if the spatial inhomogeneities and anisotropies in the particle velocity
distribution are taken into account. Calculations based on the collisional velocity
distribution between pairs of particles, spatially averaged, will not be in agreement
with simulations which do incorporate the long-range correlations. So this provides
an indirect test of whether there are force chains or correlated regions in the dense
shear flow of hard particles.

While the effect of correlations on reducing the dissipation rate has been discussed
in literature, this alone is not the complete picture. There have been studies (e.g.
Goldschmidt et al. 2002) which have shown that the decrease in the dissipation rate
is accompanied by an increase in the collision frequency, as the particles are made
more inelastic. This is a puzzling result which has not been discussed in any detail,
and one of our motivations is to see whether an accurate modelling of the relative
velocity distribution can explain this.

We first examine the ordering in the system, which is quantified by the icosahedral
order parameter, Q6, in three dimensions and the planar order parameter, q6, in
the plane perpendicular to the gradient direction. In an elastic fluid in the absence
of shear, Q6 is 0 for volume fraction below the ordering (crystallization) transition,
φ < 0.49, and increases to a value larger than 0.5 when the volume fraction is increased
beyond 0.49. In a shear flow, we find that Q6 is close to 0 even for volume fractions
in the range 0.5–0.6 if the system size is sufficiently large. If the system size is small,
then there is an ordering transition for φ > 0.49, and the coefficient of restitution is
close to 1. This leads us to conclude that the natural state for a sheared inelastic fluid
is the random state with no icosahedral ordering, and previous reports of ordering
(Kumar & Kumaran 2006) are an artefact of small system sizes.

The collision frequency is analysed as a function of the volume fraction and
coefficient of restitution for the random state. We prefer to work with the collision
frequency here, even though the pair distribution function is more commonly reported
in literature. This is because the pair distribution function is usually calculated from
the collision frequency, assuming that the relative velocity distribution for the particles
is a Gaussian distribution and using either the relation of the form (3.21) below for a
gas of elastic particles or the modified form of Garzo & Dufty (1999) which takes into
account the inelastic nature of the collisions. In part 2, we find that the two-particle
velocity distribution function deviates significantly from a Gaussian distribution, and
the pair distribution function has to be calculated more carefully. Therefore, we prefer
to analyse the collision frequency first and then calculate the pair distribution function
after determining the distribution of relative velocities.

The present analysis shows that at constant strain rate, the collision frequency
diverges at a volume fraction φad lower than the random close-packing volume
fraction of 0.64 for an equilibrium elastic fluid in the absence of shear. Here, φad
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Figure 1. Configuration and coordinate system for analysing the homogeneous shear flow of
inelastic spheres.

refers to the volume fraction for arrested dynamics, which is the volume fraction at
which the collision frequency and stresses diverge at constant strain rate or at which
the strain rate is 0 at constant stress. The value of φad first decreases as the coefficient
of restitution decreases and seems to approach a constant value of about 0.58–0.585
for 0.6 <en < 0.8 for rough particles. The collision frequency is found to have a
power-law divergence, ν ∝ (φad − φ)−a , where the exponent a is also determined as a
function of volume fraction.

The modified form of the collision frequency is used to determine the pair
distribution function, and this pair distribution function is incorporated into the
Chapman–Enskog theory. It is found that the prediction for the stresses and the
dissipation rate is qualitatively captured by the theory, but there are quantitative
differences between the theory and simulations. In order to determine the reasons
for this difference, the velocity distribution function for the relative velocity between
colliding particles is analysed in detail in part 2.

2. Microscopic model and simulation technique
The system consists of rough inelastic spheres of diameter d , subjected to a rate

of deformation field G = γ̇ exey . In the coordinate system used here, the flow is in
the x-direction and the velocity gradient in the y-direction, and the z-coordinate is
perpendicular to the flow plane (later referred to as the vorticity direction), as shown
in figure 1. The particle mass m and diameter d are set equal to 1 without loss of
generality, so that all mass and length dimensions are non-dimensionalized by the
particle mass and diameter respectively. The motion of the particles is described by
their velocity u and the angular velocity ω. The fluctuating velocity of the particles is
defined as c = u − U , while the fluctuating angular velocity is defined as � = ω − Ω ,
where Ω is the mean angular velocity. Note that U is a linear function of the
coordinate along the gradient direction, while Ω is independent of position for a
homogeneous shear flow. The collision rules used for calculating the collision integral
are as follows: Consider a collision between two particles having velocities u and u∗

and angular velocities ω and ω∗, in which the unit vector in the direction of the line
joining the centres of the particles from the particle at x to the particle at x∗ is k. In a
collision that conserves linear and angular momenta, the sum of the velocities (u+u∗)
and the difference in the angular velocities (ω−ω∗) are conserved in the collision. The
velocity difference between the two surfaces at contact, g, can be written in indicial
notation as gi = (ui −u∗

i )− (εijl/2)kj (ωl +ω∗
l ), where εijl is the antisymmetric tensor. In
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the collisional model used here, the post-collisional tangential and normal velocities
are related to their pre-collisional values by

g′
iki = −engiki, (2.1)

εijkkjg
′
k = −etεijkkjgk, (2.2)

where 0 � en � 1 and −1 � et � 1 are the normal and tangential coefficients of
restitution. In the direction along the line joining the centres, en = 1 corresponds
to elastic collisions and en = 0 corresponds to perfectly inelastic collisions, while in
the direction normal to the line joining the centres, et = −1 corresponds to smooth
spheres and et = 1 corresponds to rough spheres for which the relative tangential
velocity vector changes sign upon collision. Using these collision laws, the post-
collisional linear and angular velocities are related to their pre-collisional values
by

u′
i − ui = −((1 + en)/2)(uj − u∗

j )kjki − ((1 + et )/2)(4I/(1 + 4I))((δij − kikj )(uj − u∗
j )

− (εijl/2)kj (ωl + ω∗
l )), (2.3)

ω′
i − ωi = −((1 + et )/2)(4I/(1 + 4I))(1/2I)(εijlkj (ul − u∗

l )

+ (1/2)(δij − kikj )(ωj + ω∗
j )), (2.4)

where I is the moment of inertia scaled by the product of the mass and the square
of the diameter of the particle, which varies between 0 and 0.25 for spherical particles
with all the mass confined within the particle diameter. In the present analysis, we
use the value I = 0.1 appropriate for spherical particles with constant mass density.

We use the event-driven simulations of the simple shear flow in three dimensions in
the absence of gravity. In this simulation technique, the interaction between particles
are modelled as instantaneous contacts. In the simulation procedure, at any point
in time, the trajectories of the particles are extrapolated forward in time, and the
collision which is going to take place after the shortest time interval is identified. All
particle positions are advanced by this time interval, and the velocities of the colliding
particles are updated according to the collision rules. The simulations were initiated
with the particles arranged in a face-centred cubic (FCC) lattice and with velocities
chosen from a random distribution with 0 mean and variance 1. The simulation was
first allowed to proceed for 2 × 104 collisions per particle in order to reach a steady
state, and the averaging was carried out over another 2 × 104 collisions per particle.
All the simulation results, unless otherwise noted, were obtained using a cubic box
with 500 particles, and the dimensions of the box were adjusted in order to obtain
the desired volume fraction.

In the simulations, a uniform shear flow is imposed using periodic boundary
conditions in the flow and vorticity directions and Lees–Edwards boundary conditions
in the gradient direction (Allen & Tildesley 1992). In the Lees–Edwards boundary
conditions, the images of the central box in the gradient direction are assumed
to be moving in the flow direction with a velocity equal to the strain rate times
the displacement of the box in the gradient direction. In the long-time limit, this
procedure results in a linear velocity profile with the desired strain rate.

Event-driven simulations suffer from the disadvantage of inelastic collapse, i.e.
an infinite number of repeated collisions in a finite time, so that the period between
collisions goes to zero. This phenomenon was first reported in one-dimensional systems
(Bernu & Mazhigi 1990; McNamara & Young 1992) and in the two-dimensional
homogeneous cooling state of a homogeneous granular fluid (McNamara & Young
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Figure 2. The volume fraction (�), the scaled average velocity (〈ux〉/(L/2)γ̇ ) (�) and the
scaled average angular velocity (〈ωz〉/γ̇ ) (�) as functions of the scaled cross-stream distance
(y/L), where L is the length of the simulation box in the y-direction, for a simulation with
500 particles (et =1, en = 0.8) and for average volume fraction φ = 0.57 (filled symbols) and
φ = 0.58 (open symbols). The simulation box was divided into 20 equal bins in the y-direction
for obtaining these results, and the averaging was carried out over 2 × 104 collisions per
particle.

1994). However, inelastic collapse occurs only when the coefficient of restitution is
assumed to be a constant. It is possible to avoid inelastic collapse by using a more
realistic velocity-dependent coefficient of restitution which goes to 1 when the relative
velocity goes to 0 (Goldman et al. 1998) or by switching off inelasticity if the time
between collisions is smaller than a minimum value (Luding & McNamara 1998).
The range of inelasticities for inelastic collapse in sheared granular flows is typically
less than that for the homogeneous cooling state. Alam & Hrenya (2001) have carried
out calculations for shear flow of smooth particles in two dimensions, and they have
reported that inelastic collapse happens at about en = 0.4. There do not seem to be
systematic studies for three dimensions or for rough particles, but simulations in three
dimensions at large volume fractions (upto 0.6) and with coefficient of restitution as
low as 0.7 have been carried out using the event-driven method by several authors
(Campbell 1997; Mitarai & Nakanishi 2007). Numerical errors at larger volume
fractions due to repeated collisions result in particle overlaps. It is possible to obtain
results even with a few particle overlaps, since the total volume available to all
other particles does not change very much. However, as the number of overlaps
increases, the results become erroneous because an overlap between a pair of particles
releases free volume for other particles, thereby reducing the actual volume fraction.
The overlap of particles also has an effect on the values of the volume fraction,
mean velocity and the mean angular velocity of the particles. Figure 2 shows the
variation of the volume fraction, mean velocity and mean angular velocity with the
y-coordinate for rough particles (et = 1), en = 0.8 and two volume fractions, φ = 0.57



116 V. Kumaran

Rough particles Smooth particles

en et φmax en et φmax

0.98 1.00 0.60 0.90 −1.00 0.63
0.95 1.00 0.594 0.95 −1.00 0.62
0.90 1.00 0.586 0.90 −1.00 0.60
0.80 1.00 0.574 0.80 −1.00 0.60
0.70 1.00 0.572 0.70 −1.00 0.57
0.60 1.00 0.564 0.50 −1.00 0.56
0.90 0.90 0.572
0.80 0.80 0.572

Table 1. Maximum volume fraction, φmax , at which there were no particle overlaps at the end
of a simulation run of 2 × 104 collisions per particle for a 500-particle system for both rough
particles (et = 1) and smooth particles (et = −1).

and φ = 0.58. In the simulations, it was observed that there is no particle overlap for
φ = 0.57, whereas particle overlap was observed for φ = 0.58. Figure 2 shows that the
a linear velocity profile and the expected constant average angular velocity ωz =0.5γ̇

is observed for φ = 0.57. However, there are deviations from the linear velocity profile
and the constant angular velocity for φ = 0.58, indicating that the simulated flow does
not adequately represent a homogeneous linear shear flow. In order to exercise an
abundance of caution, we have reported only results in which there are no particle
overlaps, and a linear mean velocity and constant angular velocity are observed in
the simulations as shown in figure 2 for φ = 0.57. The maximum volume fractions
for which we were able to obtain results are shown as functions of the coefficient of
restitution for smooth and rough particles in table 1.

In addition to inelastic collapse, a related, but distinct, issue is that of clustering
(Hopkins & Louge 1991; Goldhirsch & Zanetti 1993). Whereas inelastic collapse is a
simulation difficulty, which can be overcome by making the particle collisions elastic
at low relative velocities, clustering is an indication of the instability of the system
at small perturbations. The clustering instability for the homogeneous cooling state
has been captured by linear stability studies of the macroscopic dynamical equations.
However, the stability characteristics of a shear flow are very different from that of
the homogeneous cooling state, due to the translation of fluid elements past each
other by the mean shear. The decay of perturbations in a shear flow is anisotropic
(Kumaran 2004, 2006a) and depends on the alignment of the wave vector with respect
to the shear direction. For a linear shear flow, it is known that perturbations with
wave vector in the flow direction are unstable at short times but are stabilized at
long times due to the rotation of the wave vector due to mean shear. Perturbations
with wave vector in the gradient direction are stable, but those with wave vector in
the vorticity direction could be stable or unstable depending on the values of the
viscometric coefficients.

The instability of the base state in a shear flow will be manifested in the formation of
density inhomogeneities. In the simulation studies, we monitor the density profiles in
the gradient and the vorticity directions, and we find that there are no inhomogeneities
formed for the system sizes considered here. We have not analysed, in detail, whether
there are inhomogeneities for much larger system sizes, because the present analysis is
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aimed at obtaining constitutive relations for the flow; the stability of the macroscopic
equations generated by these constitutive relations will be considered in future.

3. Structure and diffusion
We examine the ordering of particles in the flow in two ways. The first is the

planar arrangement of particles in the x–z plane, which would be in a hexagonally
close-packed state if ordered layers of particles were sliding over each other in the
shear flow. In two dimensions, the hexagonal order parameter for particles in contact
is defined by

qm = 〈exp (imθp)〉, (3.1)

where 〈·〉 is the average over all the bonds in the system and θp is the angle, in the x–z

plane, formed by a bond with respect to some arbitrary axis. The order parameter q6

is 1 for a perfect hexagonally ordered crystal and 0 if there is no hexagonal order in
the system. For the present hard-sphere system, we define the order parameter qm as
the sum over all binary collisions, since the particles are in contact only at collision.
Thus, the order parameter qm is defined as

qm =
1

Ncol

∑
collisions

exp (imθ), (3.2)

where Ncol is the number of collisions, and the above average is carried out over all
collisions.

In three dimensions, the presence of icosahedral ordering can be inferred from the
three-dimensional order parameter Ql , which is defined as

Ql =

(
4π

2l + 1

l∑
m=−l

|〈Ylm(θ, φ)〉|2
)1/2

, (3.3)

where Ylm(θ, φ) is the spherical harmonic,

Ylm(θ, φ) =

√
2l + 1

4π

(l − m)!

(l + m)!
P m

l (cos (θ)) exp (imφ); (3.4)

θ and φ are the azimuthal and meridional angles in a spherical coordinate system
with an arbitrary axis; and P m

l are the Legendre polynomials. For systems with
perfect icosahedral ordering – FCC or bond critical point (BCP) structures – Q6 is
greater than 0.5, whereas it is 0 for random structures. Therefore, Q6 can be used to
distinguish between random and ordered structures.

The planar and icosahedral structure factors are shown as functions of volume
fraction for different system sizes and coefficients of restitution for smooth particles
in figure 3. One of the salient features observed here is that the order parameter
is significantly lower than that for a system of elastic particles in the absence of
shear, which shows an ordering (crystallization) transition at a volume fraction of
about 0.49 (Kumar & Kumaran 2005). In a sheared system, we observe that there
is no ordering transition, and the onset of ordering depends on both the volume
fraction and the system size. For simulations carried out with 256 particles, there
is first shear ordering, as indicated by the sharp increase of the order parameters,
provided the coefficient of restitution is 0.9 or higher. No ordering is observed, for
all the volume fractions studied here, if the coefficient of restitution is 0.8 or lower.
It should also be noted that both the in-plane and icosahedral order parameters
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Figure 3. The icosahedral order parameter Q6 ((3.3) for l = 6) (a) and the in-plane order
parameter q6 ((3.2) for m = 6) (b) as functions of volume fraction for smooth particles with
et = −1 and for different values of the normal coefficient of restitution: ∇, en = 0.8; �, en =0.9;
�, en = 0.95; �, en =0.98; +, en = 1.0. The open symbols show results for simulations with 256
particles, while the filled symbols show results for simulations with 500 particles. The results
for elastic particles, shown by the ‘+’ symbols, were obtained for a 500-particle system.

increase simultaneously, indicating that the structure consists of particles that are
aligned in a hexagonal packing in the velocity–vorticity plane, and these planes slide
over each other due to the shear. However, at a higher volume fraction, the order
parameters decrease, indicating that shear also causes the ordering to break down.
This phenomenon of shear ordering and subsequent disordering is well known for
particle suspensions (Foss & Brady 2000), and the disappearance of ordering as the
system size is increased is also observed.

This tendency to order is found to decrease substantially as the system size
is increased. Whereas the shear-induced ordering and disordering is observed for
en = 0.98, 0.95 and 0.9 for simulations with 256 particles, it is observed only for
en = 0.98 when the system size is increased to 500 particles; even this ordering
disappears when the size is increased to 1372 particles. In addition, there is a
substantial decrease in the range of volume fractions over which ordering is observed.
Figure 4 shows the order parameters for the shear flow of rough particles. It is
observed that all the qualitative features are the same for the flow of rough particles,
though there are small changes in the actual values of the order parameters.

There are two important findings of the above analysis. The first is that the volume
fraction for the ordering transition increases substantially when the system is sheared.
Even for nearly elastic particles with en =0.98, the onset of ordering is at a volume
fraction of 0.63 for the largest system sizes considered here, while for lower coefficients
of restitution, we do not observe ordering even for the highest volume fractions in
the range 0.57–0.6 that could be simulated without particle overlaps. In contrast, for
elastic particles at equilibrium, there is ordering (crystallization) at a volume fraction
of 0.49. This indicates that the natural state for a sheared system is the random state
and shear ordering is an artefact of small system sizes in simulations (Kumar &
Kumaran 2006). In simulations of granular flows down an inclined plane (Delannay
et al. 2007), ordering is also observed at solid boundaries if the system is monodisperse,
since the presence of a planar wall orders particles close to the wall. In real systems,



Dynamics of dense sheared granular flows. Part 1 119

0.48 0.52 0.56 0.60 0.64

0

0.1

0.2

0.3

0.4

0.5

(a) 0.6

0

0.1

0.2

0.3

0.4

0.5

(b) 0.6

0.48 0.52 0.56 0.60 0.64

Q6

φ φ

Figure 4. The icosahedral order parameter Q6 ((3.3) for l = 6) (a) and the in-plane order
parameter q6 ((3.2) for m= 6) (b) as functions of volume fraction for rough particles, with
et = 1 (open symbols) and et = en (filled symbols), and for different values of the normal
coefficient of restitution: ∇, en =0.8; �, en =0.9; �, en = 0.95; �, en = 0.98; +, en = 1.0, for
simulations with 500 particles.

however, it is likely that even a small amount of polydispersity would be sufficient to
destroy any order, and the random configuration is likely the more natural one. In the
present analysis, we study the properties of the random state, and it is verified, for all
the results reported here, that both the in-plane and icosahedral order parameters are
small.

A related finding is that the limit of zero strain rate (and elastic collisions), which
corresponds to an equilibrium fluid of elastic particles, appears to be a singular limit.
As noted earlier, the uniform shear flow of inelastic particles is completely specified
by the volume fraction and the coefficient of restitution, because the time dimension
in all dynamical variables can be scaled by the inverse of the strain rate, and the
temperature is related to the strain rate through the energy conservation equation.
The present simulations show that even when the coefficient of restitution is close to
1, the system is in a random state if the system size is sufficiently large so that even
a small amount of shear (and the necessary inelastic dissipation required to achieve
steady state) destroys the ordering. This can also be understood as the instability of
the ordered state to long-wave perturbations on the imposition of uniform shear. The
ordered state of the system will be stable if the size of the simulation box is small
enough that the smallest unstable wave cannot be accommodated in the simulation
box. However, as the system size becomes larger, the ordered state will eventually
become unstable, and the system will attain a random state. Therefore, it is more
appropriate to study the random state for these systems.

Next, we analyse the mean square displacement and the diffusion coefficients. In the
absence of a shear flow, the mean square displacement of a particle increases linearly
in time, and the rate of growth of the mean square displacement is proportional to
the diffusion coefficient. In the presence of shear, there is an additional (convective)
contribution to the mean square displacement due to the mean velocity, which was
first calculated by Dufty (1984) and subsequently by Brady & Morris (1997). Due
to this, the mean square displacements in the presence of shear are related to the
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diffusivities by

〈(x(t) − x(0))2〉 = 2Dxxt + Dxyγ̇ t2 + 2Dyy(γ̇
2t3/3), (3.5)

〈(x(t) − x(0))(y(t) − y(0))〉 = 2Dxyt + Dyyγ̇ t2, (3.6)

〈(y(t) − y(0))2〉 = 2Dyyt, (3.7)

〈(z(t) − z(0))2〉 = 2Dzzt. (3.8)

Note that the mean square displacement in the x-direction is proportional to t3 in the
presence of shear, while cross-correlation is proportional to t2.

It is difficult, in simulations, to calculate the diffusivities using (3.5)–(3.8), since it
involves the small difference between two large numbers. Therefore, in the simulations,
we follow the procedure of Foss & Brady (1999), where the affine displacement due
to the shear flow is subtracted from the particle position while calculating the mean
square displacement. Consider the displacement of a particle with velocity (ux, uy, uz)
from the initial location (x(i), y(i), z(i)) to the final location (x(f ), y(f ), z(f )) in the time
interval �t in between two collisions. The affine displacement �xa due to shear flow
in the x-direction is

�xa = x(i) + y(i)γ̇ �t + uyγ̇ (�t)2/2. (3.9)

The total affine deformation is the sum of the affine deformations over all the
displacements of the particle, and the x-coordinate of the particle in the deforming
strain field is defined as

xa(t) = x(0) +
∑

displacements

�xa, (3.10)

where x(0) is the initial particle location. The affine deformations in the other
two coordinate directions are zero, since the mean velocity is zero. Once the affine
deformation has been subtracted out, the mean square displacement is related to the
diffusion coefficient in a manner similar to that in the absence of shear,

〈(x(t) − xa(t))2〉 = 2Dxxt, (3.11)

〈(x(t) − xa(t))(y(t) − y(0))〉 = 2Dxyt, (3.12)

〈(y(t) − y(0))2〉 = 2Dyyt, (3.13)

〈(z(t) − z(0))2〉 = 2Dzzt. (3.14)

In the simulations, the affine displacement for each particle at any instant of time is
calculated using (3.10), and (3.11)–(3.14) are used to calculate the diffusion coefficients.

Before proceeding to present the results for the diffusion coefficient, we discuss
the relation between ordering and diffusivity. Figure 5 shows the mean square
displacements as functions of time for smooth particles with en = 0.9 and et = −1
at a volume fraction φ = 0.58. The results are shown for two different system sizes,
the first with 256 particles and the second with 500 particles. These were chosen
because the order parameter is different for these two systems; as shown in figure 3,
the system with 256 particles shows both in-plane and icosahedral ordering, whereas
that with 500 particles shows no ordering. It is observed that when there is no
ordering, the mean square displacements in all directions increase proportional to t ,
as expected for diffusive motion. However, when there is ordering, the mean square
displacements in the flow direction increase faster than t , while those in the other
two directions increase slower than t . This feature is observed for other values of the
coefficient of restitution and for other system sizes as well. This indicates that particle
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Figure 5. The scaled mean square displacements 〈(�x)2〉/d2 (solid line), 〈(�y)2〉/d2 (dashed
line) and 〈(�z)2〉/d2 (dotted line) as functions of the scaled time t γ̇ for systems with 256
particles (�) and 500 particles (�) at volume fraction φ = 0.58. Here, 〈(�x)2〉 = 〈(x(t)−xa(t))2〉,
〈(�y)2〉 = 〈(y(t) − y(0))2〉 and 〈(�z)2〉 = 〈(z(t) − z(0))2〉. The straight line in the figure shows a
slope of 1.

diffusion is significantly affected by ordering; diffusive particle motion is observed
only for a random state, and anomalous behaviour of the mean square displacement
is observed when the system is ordered. It also underscores the importance of using
a sufficiently large number of particles and ensuring that the sheared state is in the
random configuration; the system may be in the ordered configuration if the number
of particles is not sufficiently large, resulting in the misleading conclusion that particle
motion is not diffusive (Campbell 1997; Kumar & Kumaran 2006). In the present
analysis, we take care to ensure that the system is in a random state for all of the
results reported here.

The variation of the diffusion coefficients with volume fraction are shown for
different coefficients of restitution in figure 6. There are two points to be noted while
interpreting these graphs. The first is that there are significant error bars, of magnitude
between 10 % and 15 % of the value of the diffusion coefficients, which have not been
shown in order to enhance clarity. The second is that the diffusion coefficient Dxy is
found to be about one order of magnitude smaller than the coefficients Dyy and Dzz

in our calculations, and the error bar in the calculation of Dxy is comparable to the
value of Dxy itself. The small value and large error bar lead us to conclude that Dxy

is negligible in the simulations compared to the other components in the diffusion
tensor, and so this diffusion coefficient is not plotted here. Figure 6 shows that the
diffusion coefficients are nearly equal when the coefficient of restitution is close to
1. This is expected because the limit en → 1 corresponds to an elastic system, for
which diffusion is expected to be isotropic. However, there is significant anisotropy
as the coefficient of restitution is decreased. In all cases, we find that the diffusion
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Figure 6. The scaled diffusion coefficients (Dxx/γ̇ d2) (�), (Dyy/γ̇ d2) (�) and (Dzz/γ̇ d2) (�)
as functions of volume fraction φ for smooth particles (et = −1) and for en = 0.95 (solid lines)
and en = 0.6 (dashed lines).

coefficient Dxx is larger than the other two diffusion coefficients. However, the results
in figure 6, as well as our other results, show that Dyy could be larger or smaller than
Dzz, depending on the volume fraction and the coefficients of restitution. Another
interesting feature observed in figure 6 is that the diffusion coefficient does not decrease
to zero but seems to tend to a finite value at the highest volume fractions at which
there is diffusive motion and no ordering. A similar feature is observed for rough
particles and for other coefficients of restitution as well. A related phenomenon, the
sharp decrease in the diffusion coefficient at the ordering (crystallization) transition in
hard-sphere equilibrium fluids at φ = 0.49, is well known (Kumar & Kumaran 2005).
Whether this is a continuous or a first-order transition is a well-debated issue, which
is not yet satisfactorily resolved by simulations, since finite-size effects could make a
discontinuous transition seem continuous. The analogue of this for a sheared system
is observed in figure 6, where there is a sharp but continuous decrease in the diffusion
coefficient at the onset of ordering. A question for future research, motivated by the
present result, is whether the transition is really continuous or whether the continuous
nature of the decrease of the diffusion coefficient is an artefact of the finite size of
the simulation which would disappear in the limit of large system size.

In figures 7 and 8, we show the diffusion coefficient Dxx scaled in two ways, by the
strain rate in the first case and by the square root of the translational temperature Tt

in the second. Here, the translational temperature is defined as

3Tt = 〈(ux − 〈ux〉)2 + u2
y + u2

z〉, (3.15)

where ux , uy and uz are the components of the particle velocity. The trends for
the other two diffusion coefficients are qualitatively similar, though the diffusion
coefficients are smaller. It is observed that the diffusion coefficients for rough inelastic
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particles are always smaller than those for smooth inelastic particles. When the
diffusion coefficient is scaled by strain rate, it shows a non-monotonic variation
with the coefficient of restitution. The diffusion coefficient first decreases when en

is decreased from 0.95 to 0.8 and then increases when en is decreased to 0.6. The
diffusion coefficient also varies in a narrow range from about 0.05 to 0.15 when
scaled in this manner, over the entire volume fraction range 0.4 to the maximum
volume fraction that could be obtained in simulations, and it seems to approach a
limiting value of about 0.05 in the dense limit for all volume fractions. However, when
scaled by the square root of the temperature, the diffusion coefficient increases as
the coefficient of restitution decreases. This difference in behaviour is because of two
effects. The first is that the ratio of the square root of temperature (which is a measure
of the fluctuating velocity) and the strain rate decreases as the coefficient of restitution
decreases. Second, the mechanism of diffusion in a shear flow appears to be different
than that for an equilibrium fluid of elastic particles. An equilibrium elastic fluid is in
an ordered (crystalline) state at a volume fraction greater than 0.49, and particles are
trapped in cages formed by their neighbours. Particle diffusion involves cage breakage
and escape, which are rare events, leading to very small diffusion coefficients. In fact,
in our simulations, the particles did not travel more than one particle diameter over
simulation runs consisting of 2 × 104 collisions per particle. In a sheared state, the
system is in a random configuration because the mean shear itself tends to prevent
cage formation, resulting in larger diffusivities. Figures 7 and 8 also show that the
strain rate is a more robust measure for the diffusivities, and the diffusion coefficient
shows a much smaller variation when scaled by the strain rate.

The near discontinuous decrease in the diffusion coefficient at the ordering transition
is due to the ‘cage-trapping’ phenomenon, where the particles surrounding a test
particle form a cage-like structure. The diffusion of particles in this state is very
slow because it occurs due to rare cage-breaking and rearrangement events. In
molecular liquids, cage trapping has been observed by scattering experiments (Pusey
& van Megan 1989), while there are direct visual observations of cage trapping in
colloidal systems (Weeks et al. 2000) and in homogeneously forced granular systems
(Reis, Ingale & Shattuck 2007). In our present simulations, we find that the caging
mechanism is operative in an equilibrium fluid of elastic particles, as shown in figure 9.
However, a sheared inelastic fluid does not exhibit caging, and particles are much
more mobile and move in a diffusive manner. This can be understood on the basis of
the lack of cage formation due to shear. Due to the linear mean velocity profile, two
particles separated by a distance of one particle diameter in the gradient direction
have to move a distance of one particle diameter past each other in the flow direction
over a time scale comparable to the inverse of the strain rate. Therefore, for a
homogeneous shear flow to be sustained, there cannot be caging over a time larger
than the inverse of the strain rate. This prevents the trapping mechanism responsible
for the slow dynamics in glassy systems (Vollmayr-Lee & Zippelius 2005) as well as
in colloids and unsheared granular systems.

The caging effect can be quantified using the intermediate scattering function,

Fs(k, t) =
1

N

∑
i

〈exp (−ik.(xi(t) − xi(0)))〉, (3.16)

where the summation is carried out over all the particles. In glassy systems, the
intermediate scattering function captures the two-step relaxation process, the fast β

relaxation which corresponds to diffusion within the cage and the slower α relaxation
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Figure 9. Trajectory of a test particle in the gradient-vorticity plane for an elastic hard-sphere
fluid in the absence of shear on the left and an inelastic sheared hard-sphere fluid with
coefficients of restitution en = 0.9 and et = 1.0 on the right. The circles show the size of the
particles, and the surrounding square shows the simulation box size. The volume fraction in
both cases is 0.55; the box size is 7.76 particle diameters; and the time period of the simulation
is 10.6 × (d/T 1/2) in both cases, where T is the translational temperature. For the sheared
inelastic fluid, this corresponds to a time period of 13.19γ̇ −1, where γ̇ is the strain rate.

which corresponds to cage breaking and escape process. For a diffusive process in the
absence of shear, the intermediate scattering function has the form

Fs(k, t) = Fs(k, 0) exp (−Dk2t), (3.17)

where D is the diffusion coefficient. Equation (3.17) indicates an exponential decay of
the intermediate scattering function with time. When there is cage trapping, however,
the intermediate scattering function does not show an exponential decay during the β

relaxation, because particles are trapped in their cages. Diffusion takes place at long
times due to the α relaxation process. This difference is shown in figure 10, where the
intermediate scattering function is shown as a function of time for an equilibrium fluid
of elastic particles at φ = 0.45 and φ = 0.50. It is observed that there is an exponential
decay of the intermediate scattering function for φ = 0.45, but there is no decay at
φ = 0.50 because the system has become ordered (crystallized) and because particles
are trapped in their respective cages. In both cases, the simulations were carried out
for a system of 500 particles in a cubic box, and the wavelength k was set equal to
(2π/L), where L is the box size.

Figure 10 also shows the intermediate scattering function for a sheared inelastic
fluid with coefficient of restitution en = 0.9. Note that for both elastic and inelastic
fluids, the time is scaled by (

√
Tt/d), where Tt is the translational temperature. The

volume fraction φ = 0.57 for the sheared inelastic fluid is much higher than that for
the elastic fluid at equilibrium at φ = 0.45 and φ =0.5. It is clear from the decay of
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Figure 10. The intermediate scattering function Fs(k, t) as a function of time for rough
particles with et = 1.0 and for en = 1.0, φ =0.45, k = 0.752652d−1 (�); en = 1.0, φ = 0.50,
k = 0.779555d−1 (�); en = 0.9, φ = 0.57, kx = 0, ky = 0.814358d−1, kz = 0 (�); and en = 0.9,

φ = 0.57, kx = 0, ky = 0, kz = 0.814358d−1 (�).

the scattering function that the motion of particles for a sheared inelastic fluid is
diffusive even at φ = 0.57, whereas the elastic fluid in the absence of shear shows no
diffusive motion even at φ = 0.50. This clearly indicates that the dynamics of particles
for an inelastic fluid under shear do not exhibit the cage-trapping mechanism.

The nature of the motion can be better understood by examining the intermediate
structure factor in the different directions. There are two effects that are exhibited by
the intermediate structure factor. In the direction of flow, Fs(kx, t) shows the effect of
advection of particles in the x-direction. For convective transport, we would expect
the decay of the structure factor to be proportional to (kxt) in this direction, since
the particle displacement is a linear function of t for convective transport. This is
indeed observed in figure 11, where intermediate structure factor F (kx, t) is shown
as a function of (kxt). The results are shown for three different volume fractions for
en = 0.9 and et = 1. The wavenumbers are chosen such that the wavelength is equal
to the box size for φ =0.5 and φ = 0.55, while the wavelength is equal to 1, (1/2) and
(1/3) times the box size for φ = 0.57. The results for other volume fractions and other
wavenumbers are in quantitative agreement with those shown in figure 11. It should
also be noted that figure 11 shows the magnitude of Fs(k, t), since the scattering
function itself oscillates between positive and negative values. It is clear that the
results for different volume fractions and wavenumbers collapse onto the same curve
if plotted as functions of (kxdtγ̇ ), indicating that the intermediate scattering function
in the flow direction depends only on the mean shear, and the scaling proportional
to kx shows the effect of advection by the mean shear.

The intermediate structure factor in the gradient and the vorticity directions is
shown as a function of k2t in figure 12. It is clear that the semi-log plot of Fs(k, t)
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Figure 11. The magnitude of the intermediate scattering function Fs(k, t) as a function of
(t γ̇ kxd) for ky = 0 and kz = 0, for coefficients of restitution en = 0.9 and et =1.0 and for
different volume fractions and wavenumbers. The solid line shows the result for φ = 0.57
and kx = 0.81436, the dashed line for φ = 0.57 and kx = 1.62872, the dotted line for φ = 0.57
and kx = 2.44308, the circles for φ = 0.55 and kx =0.80477 and the triangles for φ =0.5 and
kx = 0.77955. It should be noted that the absolute value of Fs(k, t) is shown in the figure;
alternate peaks represent positive and negative maxima.

versus k2t is a straight line and is independent of wavenumber for a given volume
fraction and coefficient of restitution, indicating that the motion in the shear flow is
diffusive. The negatives of the slope of the lines in figure 12 are in agreement with the
diffusion coefficients determined from the mean square displacements in figure 7. This
indicates that particle motion in a sheared inelastic fluid is diffusive, and there is no
cage trapping; in addition, there are no separate α and β relaxations in an inelastic
fluid.

The velocity autocorrelation function in a dense granular flow can be calculated as

ψij (t) =
〈�ui(t)�uj (0)〉
〈�ui(0)�uj (0)〉 , (3.18)

where �u is the instantaneous fluctuating velocity, which is the difference between
the particle velocity and the local mean velocity. The autocorrelation function is, in
general, a second-order tensor whose components have to be evaluated separately,
though it is isotropic in an equilibrium fluid in the absence of shear. In a dense gas
of elastic particles, it is known that the autocorrelation function has a long-time tail
ψ(t) ∝ t−3/2 due to the diffusive nature of momentum transport in the fluid. The
velocity autocorrelation function is shown as a function of time scaled by (d/T 1/2),
where T is the average temperature with units of the square of velocity and d is
the particle diameter, in figure 13 for elastic particles. (The autocorrelation function
is isotropic for elastic particles in the absence of shear.) The decay proportional to
t−3/2 is clearly observed for low volume fractions φ =0.2 in figure 13. For φ = 0.4 and
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Figure 12. The intermediate scattering function Fs(k, t) as a function of (t γ̇ (kyd)2) for kx = 0

and kz =0 (the lower three curves) and (t γ̇ (kzd)2) for kx = 0 and ky = 0 (the upper three
curves). In both cases, the coefficients of restitution are en =0.9 and et = 1.0. The solid line
shows the result for φ = 0.57 and ky or kz =0.81436, the dashed line for φ = 0.57 and ky or
kz = 1.62872 and the dotted line for φ = 0.57 and ky or kz = 2.44308. The straight lines show

the equations Fs(k, t) = exp (−Dyyk
2
y t) and Fs(k, t) = exp (−Dzzk

2
z t), where Dyy and Dzz are

shown in figure 7.

higher, there is a reversal in the sign of the autocorrelation function from positive to
negative at a finite time, due to the reversal in the velocity of the particle trapped
in the cage between its neighbours. We should note that figure 13 shows only the
magnitude of the velocity autocorrelation function, and alternate peaks in the graphs
have positive and negative signs. The time for this reversal decreases as the volume
fraction increases, due to a decrease in the dimensions of the cage formed by the
neighbouring particles. However, the absolute value of the autocorrelation function
still shows a power-law decay proportional to t−3/2 in the long-time limit. The ‘long-
time tail’ in the velocity autocorrelation function was first observed in simulations
(Alder & Wainwright 1970). This was recognized as a consequence of the diffusive
transport of the transverse momentum proportional to the square of the wave vector
in a system in which momentum and energy are conserved (Dorfman & Cohen
1972). The slow decay of the velocity autocorrelation function leads to a divergence
of the viscosity in two dimensions and a divergence of the Burnett coefficients in
three dimensions in the limit of zero shear rate (Ernst et al. 1978); for this reason,
viscometric coefficients derived using the Boltzmann equation assuming molecular
chaos cannot be extended to higher densities.

The velocity autocorrelation function for an inelastic sheared fluid of smooth
particles was analysed, using both experiments and simulations, by Orpe et al. (2008).
Here, it was found that the decay rate of the velocity autocorrelation function is much
faster than that for an elastic fluid at equilibrium, though the specific scaling law
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Figure 13. The magnitude of the velocity autocorrelation function as a function of scaled
time for elastic particles in the absence of shear for volume fraction φ = 0.2 (�), φ = 0.45 (�),
φ = 0.5 (�) and φ = 0.55 (�) for a fluid of elastic particles in the absence of shear. The dashed
line shows a slope of (−3/2).

could not be ascertained because the decay rate was too fast. A similar calculation
has been carried out in the present analysis for an inelastic sheared fluid of rough
particles, with coefficient of restitution en =0.9 and et = 1.0, as shown in figure 14.
One salient feature of the velocity autocorrelation function is that it is nearly isotropic
even in a shear flow, and the autocorrelation functions for the velocities in the three
different directions are almost equal to each other. Therefore, we have only shown
the velocity autocorrelation function in the flow direction in figure 14. The second
important feature is that the decay of the autocorrelation function is fast compared to
that in an elastic fluid at equilibrium; the velocity gets decorrelated over time periods
smaller than the inverse of the strain rate. We do not see the repeated change in sign
of the autocorrelation function observed for an elastic fluid in figure 13 and the slow
decay in the autocorrelation function.

The autocorrelation function results clearly show that the decay of the velocity
autocorrelation function in a sheared inelastic fluid is qualitatively different from
that in an elastic fluid in the absence of shear. The analysis of Kumaran (2006c)
suggested a faster decay in the velocity autocorrelation function proportional to t−9/2

because energy is not conserved in a sheared inelastic fluid, and consequently the
decay of momentum fluctuations is not diffusive. A more recent study (Kumaran
2009a, b) concluded that the decay of the autocorrelation function in a shear flow
is anisotropic and that the decay rates are proportional to t−15/4 in the flow and
gradient directions and t−7/2 in the vorticity direction. Either of these would result in
a sufficiently fast decay to render the transport coefficients convergent in both two
and three dimensions.
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Figure 14. The velocity autocorrelation function as a function of scaled time for inelastic
particles with coefficients of restitution et =1.0 and en = 0.9 in the presence of shear for
volume fraction φ =0.45 (�), φ = 0.5 (�) and φ = 0.55 (�). The dashed line shows a slope of
(−9/2).

Our present results are consistent with, but do not validate, these scaling laws. It
is difficult to obtain a definite validation of a t−7/2 or t−9/2 law because one would
need to track the decay in the autocorrelation function over more than four orders of
magnitude for one magnitude of increase in the time, and it is unfeasible to resolve the
autocorrelation function over four orders of magnitude numerically. However, the fast
decay in the velocity autocorrelation function indicates that the dynamics in a sheared
granular flow are different from that in an elastic fluid at equilibrium. Specifically,
the problems with divergences in the transport coefficients due to long-time tails in
the autocorrelation functions may not be present in a sheared inelastic fluid.

The translational temperature, scaled by the square of the strain rate, is shown as
a function of volume fraction for different coefficients of restitution in figure 15.
Surprisingly, the temperature shows a slight increase as the volume fraction is
increased; we will show in part 2 that this is due to the reduction in the rate of
dissipation of energy due to a change in the form of the relative velocity distribution
at contact. However, it is important to note that the temperature does not either
decrease to zero or diverge as the limit of close packing is approached. This indicates
that the efficiencies of the collisional processes for shear production and for inelastic
dissipation of energy increase in proportion as the close-packing limit is approached,
resulting in a finite temperature in this limit. It is also found that the temperature
for rough inelastic particles is larger than that for smooth inelastic particles. The
anisotropy in the mean square linear and angular velocities are shown in figure 16
for en =0.6. In this case, the temperature T used for the scaling is Tt in (3.15) for
smooth particles, because there is no rotational degree of freedom. However, for
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particles with et = en (dotted lines) and for en = 0.95 (×), en =0.9 (�), en = 0.8 (�) and en = 0.6
(�).
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Figure 16. The scaled mean square velocities, (〈(ux − U )2〉/T ) (�), (〈u2
y〉/T ) (�), (〈u2
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y〉/T ) (�), (I 〈(ωz − Ω)2〉/T ) (�), as functions of volume fraction φ

for en = 0.6 for smooth particles (et = −1, open symbols) and for rough particles (et = 1, filled
symbols). Only the translational root mean square velocities are shown for smooth particles
because they do not have rotational degrees of freedom.
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rough particles, T is defined as

6T =
〈
(ux − U )2 + u2

y + u2
z + I

(
ω2

x + ω2
y

)
+ (ωz − Ω)2

〉
. (3.19)

We chose the lowest value of the coefficient of restitution because it shows the
maximum anisotropy, and the anisotropy decreases as the coefficient of restitution
increases. Figure 16 shows that the velocity fluctuations are nearly isotropic, showing
a variation of less than 20 %, even when the coefficient of restitution is as low as
0.6, and the anisotropy decreases as the volume fraction increases. This is because
the relative arrangement of particles is primarily determined by steric effects at high
volume fraction, rather than by imposed shear, and the transfer of energy between
the different directions is more efficient than in a more dilute shear flow.

Next, we turn to the frequency of collisions for a dense flow. The collision frequency
is defined as the number of collisions between pairs of particles per unit volume per
unit time. Defined this way, it is an intensive quantity – it is independent of system
size. It is also possible to define the collision frequency per particle, and this definition
has its advantages in many situations. However, the standard way to define collision
frequency in kinetic theory and in reaction kinetics is per unit volume per unit time
(see § 5.2 of Chapman & Cowling 1970, for instance), and so the same definition is
adopted here as well. The collision frequency is defined as the ratio of the number
of collisions and the total time of the simulation and the volume of the simulation
box. For elastic systems, it is more common to use the pair distribution function at
contact, χ , instead of the collision frequency as a measure of the excluded volume and
shadow effect. For a dilute gas in which the single-particle distribution function is a
Maxwell–Boltzmann distribution, the collision frequency is related to the temperature
and the number density by (Chapman & Cowling 1970)

ν = 2ρ2
√

πTt , (3.20)

where ρ is the number density (number of particles per unit volume) and Tt is the
(translational) temperature. As the density is increased, the collision frequency is
underpredicted by (3.20), due to the excluded volume effect of the other particles
and the shadow effect. It is necessary to include a correction factor called the pair
distribution function,

ν = 2ρ2χ
√

πTt , (3.21)

where Tt is the actual temperature for smooth particles and the translational
temperature for rough particles. Note that for a dense flow, the pair distribution
function at contact is effectively the collision frequency scaled by the square root of
the temperature, because the number density and the volume fraction do not vary
much for φ > 0.5.

For equilibrium fluids, the pair distribution is only a function of volume fraction.
For disordered elastic hard-sphere fluids, the distribution function increases as the
volume fraction is increased and diverges at the random close-packing volume fraction
φc = 0.64. A widely used empirical relation for the pair distribution function due to
Torquato (1995) is of the form

χ(φ) =
(2 − φf )

2(1 − φf )3
(φad − φf )

(φad − φ)
. (3.22)

Here, φc = 0.64 is the volume fraction at random close packing and φf = 0.49 is the
volume fraction at freezing. Note that the pair distribution function (3.22) diverges
proportional to (φc−φ)−1 in the limit of random close packing. The collision frequency
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Figure 17. The collision frequency ν, scaled by the strain rate γ̇ , as a function of the volume
fraction φ for en = 0.98 (�), en = 0.95 (�), en = 0.9 (�), en =0.8 (�), en = 0.7 (�), en = 0.6 (�),
for smooth particles (et = −1, open symbols), for rough particles (et = 1, filled symbols) and
for rough particles with et = en (open symbols with inscribed dots).

for this case can be evaluated by inserting (3.22) into (3.21). For an inelastic fluid, we
show later that an equation of the type (3.21) is in error because the distribution of
relative velocities is not a Gaussian distribution at high densities. Therefore, we prefer
to report results for the scaled collision frequency, rather than the pair distribution
function.

The collision frequency for a sheared inelastic fluid, scaled by the shear rate, is
shown in figure 17. The collision frequency for rough particles is observed, in general,
to be higher than that for smooth particles. At low volume fractions in the range
0.4–0.45, the collision frequency is found to decrease as the coefficient of restitution
increases; in contrast, at higher volume fractions, the collision frequency is found
to increase as the coefficient of restitution increases. This is the combination of
two effects. A decrease in the collision frequency is expected as the coefficient of
restitution decreases, because the fluctuating velocity of the particles decreases if the
shear rate is kept a constant. However, there is another competing effect, which is
the faster divergence of the collision frequency with volume fraction as the coefficient
of restitution is increased. In order to separate these two effects, the scaled collision
frequency is defined as

ν∗ = (ν/φ2
√

Tt/d2), (3.23)

where Tt is the translational temperature (with units of the square of the velocity,
because the mass is set equal to 1) and d is the particle diameter. The scaled
collision frequency ν∗ is shown as a function of volume fraction in figure 18. It is
clearly observed that when scaled by the square root of the temperature, the collision
frequency monotonically increases as the coefficient of restitution decreases.
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Figure 18. The scaled collision frequency ν∗ = (ν/φ2
√

Tt/d2) as a function of the volume
fraction φ for en =0.98 (�), en =0.95 (�), en =0.9 (�), en = 0.8 (�), en = 0.7 (�), en = 0.6 (�),
for smooth particles (et = −1, open symbols), for rough particles (et = 1, filled symbols) and
for rough particles with et = en (open symbols with inscribed dots).

It should be noted that (3.20) and (3.21) are valid only for fluids at equilibrium;
there are corrections to the collision frequency due to shear. In the study of sheared
hard-core fluids by Lutsko (2001), the maximum increase in the pair distribution
function at volume fractions of about 25 % was found to be about 1 at contact. The
present difference in the pair distribution function is much larger; in addition, the
present analysis indicates a divergence of the pair distribution function at a lower
volume fraction than that for an elastic fluid. This is a much larger deviation than
that predicted just on the basis of the deformation of the equilibrium pair distribution
due to shear.

An important feature to note is that for inelastic particles, the collision frequency
appears to diverge at a different volume fraction than the random close-packing
volume fraction, φc =0.64. In elastic hard-particle systems, the pair distribution
function χ (3.21) is usually used in order to show the divergence of the pair distribution
function with volume fraction. As noted above (3.21) applies only if the distribution
function is a Gaussian distribution, and so the pair distribution function cannot
be obtained from (3.21) if the distribution function is not a Gaussian distribution.
However, in order to incorporate the effect of temperature and density on the pair
distribution function, we define a scaled collision frequency as given in (3.23). For
equilibrium hard-particle systems and for φ > 0.49, if (3.22) is used for the pair
distribution function, the scaled collision frequency (3.21) is given by

ν∗ =
11.039

(φc − φ)
, (3.24)

where φc = 0.64 is the volume fraction at random close packing. In figure 19, we
show the scaled collision frequency as a function of volume fraction for different



Dynamics of dense sheared granular flows. Part 1 135

0

0.005

0.010

0.015

0.48 0.52 0.56 0.60 0.64

φ

(ν
*)

–
1

Figure 19. The inverse of the scaled frequency, (ν∗)−1, as a function of the volume fraction φ
for en = 0.98 (�), en =0.95 (�), en = 0.9 (�), en = 0.8 (�), en = 0.7 (�), en =0.6 (�), for smooth
particles (et = −1, open symbols), for rough particles (et = 1, filled symbols) and for rough
particles with et = en (open symbols with inscribed dots). The lines are the best fits obtained
using (3.25). The solid line shows relation (3.24) for a fluid of elastic particles in the absence
of shear.

values of the coefficient of restitution. Here, it is observed that the volume fraction
φad at which (ν∗)−1 decreases to zero depends on the coefficient of restitution. Here,
the term φad is the volume fraction for arrested dynamics, at which the collision
frequency and the stresses tend to infinity at constant strain rate or at which the
strain rate tends to zero at constant stress. In addition, the frequency of collisions is
not inversely proportional to (φad − φ) but has a power-law relationship as the limit
of close packing is approached.

We use the data in figure 19 in order to fit a relationship of the form

ν∗ =
ν∗

0

(φad − φ)a
, (3.25)

where the parameters ν∗
0 , φad and a depend on the coefficient of restitution. The least

squares fitting procedure is as follows: For every two adjacent data points (φi, (ν
∗
i )

−1)
and (φi+1, (ν

∗
i+1)

−1) in figure 19, we evaluate the error function,

Error = (log ((ν∗
i+1)

−1) − log ((ν∗
i )

−1) − a(log (φad − φi+1) − log (φad − φi)))
2. (3.26)

The average of the error function over all pairs of data points in figure 19 is then
calculated as

Average error =
1

N − 1

N−1∑
i=1

(
log ((ν∗

i+1)
−1) − log ((ν∗

i )
−1)

− a(log (φad − φi+1) − log (φad − φi)))
2 , (3.27)
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Rough particles, et = 1 Smooth particles, et = −1

en et φad a ν∗
0 Average error en φad a ν∗

0 Average error

1.00 1.00 0.640 1.00 11.04 1.00 0.640 1.00 11.04
0.98 1.00 0.612 0.98 11.69 4.17 × 10−6 0.98 0.629 1.00 10.78 2.24 × 10−4

0.95 1.00 0.604 1.11 8.510 1.22 × 10−4 0.95 0.622 1.01 10.91 1.94 × 10−5

0.90 1.00 0.593 1.09 10.14 9.97 × 10−5 0.9 0.620 1.15 8.475 3.81 × 10−5

0.80 1.00 0.585 1.32 6.590 1.88 × 10−4 0.8 0.614 1.30 6.411 4.20 × 10−5

0.70 1.00 0.583 1.59 4.699 2.83 × 10−5 0.7 0.601 1.25 7.101 1.59 × 10−5

0.60 1.00 0.581 1.46 9.790 4.92 × 10−4 0.6 0.595 1.39 5.575 2.88 × 10−5

0.90 0.90 0.589 1.23 7.185 4.75 × 10−4

0.80 0.80 0.585 2.36 0.778 1.42 × 10−3

Table 2. The parameters φad , a and ν∗
0 and the average error, obtained by fitting (3.25) to the

data in figure 19, as functions of the coefficient of restitution en for smooth particles, et = −1,
and for rough particles, et = 1. The values for en = 1 are those obtained using the expression
of Torquato (1995) for elastic hard spheres.

where N is the total number of data points in figure 19 in the volume fraction
range φ =0.52 to φ = φmax , with φmax being the maximum volume fraction for which
simulation results could be obtained. The average error is then minimized with respect
to the two constants, φad and a. After the constants φad and a are evaluated, ν∗

0 is
determined from (3.25). Expressions (3.25) for different values of the coefficient of
restitution, for the values of ν∗

0 , φad and a for which the error is minimum are shown
by the lines in figure 19.

The constants ν∗
0 , a and φad , which provide the best fits for the collision frequency,

are shown as functions of the coefficients of restitution in table 2. It should be noted
that the values are not completely reliable for en = 0.6, since we have only five points
in the range 0.52–0.56 to obtain the fit, and so four pairs of points were used to
determine the three parameters in (3.25). For all other coefficients of restitution, the
fits are obtained with a minimum of six points in the range 0.52–0.57. There are
two important effects observed in table 2. It is observed the value of φad , which is
the volume fraction at which the pair distribution function diverges, decreases as the
coefficient of restitution decreases. For elastic particles, φad is about 0.64, whereas φad

seems to decrease to a minimum value near 0.58 for highly inelastic particles. Coupled
with the decrease in φad , the exponent a in (3.25) increases from a value close to
1 for nearly elastic particles to a value closer to 1.5 for particles with coefficient of
restitution 0.7. This indicates that it is necessary to use a modified form of the pair
distribution function (3.25) for sheared inelastic particles; significant errors are likely
if the expression for elastic particles (Torquato 1995) is used.

Next, we turn to the stress and the rate of dissipation of energy. The stresses in the
flow are mostly due to collisions, and the streaming stresses are typically two orders
of magnitude less than the collisional stresses. In the simulations, the collisional stress
tensor and the rate of energy dissipation per unit volume are obtained using the
expressions

σij =
1

V τ

∑
collisions

(�ui)kj , (3.28)

D =
1

V τ

∑
collisions

�E, (3.29)
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Figure 20. The isotropic part of the stress tensor divided by the collision frequency, (p/ν),
as a function of the volume fraction for smooth particles with et = −1 (a) and rough particles
with et = 1 and et = en (b) and for different coefficients of restitution: �, en =0.98, et = ± 1;
�, en =0.95, et = ± 1; ∇, en = 0.9, et = ± 1; �, en = 0.8, et = ± 1.0; �, en = 0.7, et = ± 1.0; �,
en = 0.6, et = ±1.0; ∗, en = 0.9, et = 0.9; ×, en = 0.8, et =0.8. The filled symbols and the symbols
with superscribed circles show the results from simulations, while the open symbols and the
symbols without superscribed circles show the Chapman–Enskog prediction (Kumaran 2004,
2006).

where τ is the time period of the simulation; V is the volume of the simulation cell;
and the summation is carried out over all the collisions in the time period τ . In the
expression for the stress σij , �u is the change in the velocity of one of the particles
undergoing the collision (the change in velocity for the other particle is equal in
magnitude to and opposite in direction from momentum conservation) and k is the
line joining the centres of the two particles directed from the particle with velocity
change �u. In (3.28) for the energy dissipation, �E is the change in the sum of the
kinetic energies of the particles in a collision.

Instead of plotting the stresses, which diverge as the close-packing limit is
approached, it is more illuminating to plot the ratio of the stress and the
scaled collision frequency, (σij /ν). Figure 20 shows (p/ν), where the pressure
p = ((σxx + σyy + σzz)/3) is the isotropic part of the stress tensor. The ratio of the
shear stress and the pair distribution function, (−σxy/ν), is shown in figure 21. An
important result of the present study is that the ratio of the stress and the collision
frequency does not diverge for φ → φad , and the variation in the ratio of the stress
and the collision frequency is not more than about 50 % in the range of volume
fractions 0.4 to φad . The range of variation is similar for both the normal and shear
stresses. In contrast, the collision frequency diverges at close packing, and it varies
by three orders of magnitude in the simulations. This clearly indicates that both
the shear and normal stresses have the same divergence as the collision frequency
as the limit of close packing is approached. It is also observed that the magnitude
of the stress decreases as the coefficient of restitution decreases; this is mainly because
the temperature (scaled by the square of the strain rate) decreases as the particles
are made more inelastic. Also shown in figures 20 and 21 are the predictions of
the Chapman–Enskog theory (Kumaran 2004, 2006a), in which we have used the
pair distribution function obtained from the simulations, using (3.21). Clearly, the
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Figure 21. The negative of the shear stress divided by the pair distribution function, (−σxy/ν),
as a function of the volume fraction for smooth particles with et = −1 (a), for rough particles
with et = 1 and et = en (b) and for coefficients of restitution: �, en = 0.98, et = ± 1; �,
en = 0.95, et = ± 1; ∇, en = 0.9, et = ± 1; �, en = 0.8, et = ± 1.0; �, en = 0.7, et = ± 1.0; �,
en = 0.6, et = ± 1.0; ∗, en = 0.9, et = 0.9; ×, en = 0.8, et = 0.8. The filled symbols and the
symbols with superscribed circles show the results from simulations, while the open symbols
and the symbols without superscribed circles show the Chapman–Enskog prediction (Kumaran
2004, 2006a).

qualitative variation of the components of the stress are well captured by the theory,
and the numerical values are also quite accurate for en = 0.9. However, at both
higher and lower coefficients of restitution, there are numerical differences between
the simulation results and the predictions of the Chapman–Enskog theory. The ratio
of the dissipation rate and (νT ) is shown in figure 22. It has been known, for some
time, that the dissipation rate is significantly overpredicted by the Chapman–Enskog
theory, and figure 22 shows that the prediction is up to an order of magnitude higher
than the value actually observed in simulations.

Based on the above analysis, it is clear that the collision frequency under a shear
flow is significantly different from that for an equilibrium system. Both the nature
of the divergence and the volume fraction at which the divergence occurs vary as
the coefficient of restitution changes. Another important finding is that (Tt/(d

2γ̇ 2)) is
finite as the limit of close packing is approached, and all components of the stress
tensor have the same divergence as the collision frequency. The Chapman–Enskog
theory predicts all the qualitative features of the stress tensor, provided the value of
the collision frequency obtained from the simulations is used in the theory. However,
the numerical agreement is satisfactory only for a coefficient of restitution around 0.9
and not for other values of the coefficient of restitution. We examine the reasons for
the numerical disagreement in part 2, where the distribution of the relative velocities
is analysed.

4. Conclusions
A detailed summary of the findings of parts 1 and 2 is provided at the end of

part 2; here we briefly recall the important findings of part 1. At the outset, it is
important to note that the simulations carried out here have all been on relatively
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Figure 22. The rate of dissipation of energy due to inelastic collisions D, divided by the
collision frequency and T , as a function of the volume fraction for smooth particles with et = −1
(a) and for rough particles with et = 1 and et = en (b), for different coefficients of restitution:
�, en =0.98, et = ± 1; �, en = 0.95, et = ± 1; ∇, en = 0.9, et = ± 1; �, en = 0.8, et = ± 1.0; �,
en = 0.7, et = ± 1.0; �, en = 0.6, et = ± 1.0; ∗, en = 0.9, et =0.9; ×, en =0.8, et = 0.8. The filled
symbols and the symbols with superscribed circles show the results from simulations, while
the open symbols and the symbols without superscribed circles show the Chapman–Enskog
prediction (Kumaran 2004, 2006a).

small systems of 500 particles. This enabled us to carry out a large number of
simulations, as shown by the number of points in figure 19, for example, which
would not have been possible if simulations were carried out using a significantly
larger number of particles. In addition, the event-driven simulations were able to
access a maximum volume fraction in the range from 0.56 (for en = 0.6) to 0.62 (for
en = 0.98), and so results for higher volume fractions were obtained by extrapolation.
It is necessary to carry out simulations of larger sizes, and it is possible the numerical
values of the results obtained here will change slightly if larger system sizes are
used, and simulations of higher numerical accuracy are used to probe higher volume
fractions. However, the simulation studies have given us fundamental insights into
several aspects of the shear flow of inelastic particles and have clarified a number of
puzzles that have existed previously in literature. The nature of the insights obtained
are likely to be more robust and to hold even for larger systems. These are discussed
in detail, and placed in the context of previous studies, at the end of part 2. Here, we
briefly summarize the results obtained so far.

It is useful to recall that for homogeneous sheared inelastic hard spheres, the
dynamics of the collision between particles are completely determined by two
coefficients of restitution, which are dimensionless. Since collisions are assumed to
be instantaneous, the only time scale in the problem is the flow time, which is the
inverse of the strain rate γ̇ . By dimensional analysis, the stress is proportional to γ̇ 2,
while the rate of dissipation of energy is proportional to γ̇ 3. The ratio of the stress
components and square of the strain rate (Bagnold coefficients) are only functions of
the volume fraction and the coefficient of restitution. We set the strain rate equal to
1 without loss of generality in the present analysis.
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The first important result of the present analysis concerns ordering in a sheared
granular flow of inelastic particles. For a fluid of elastic particles at equilibrium in the
absence of shear, it is well known that there is an ordering transition at φ = 0.49. This
is inferred numerically from the bond-orientational order parameter, which provides
an indication of the orientation of particles relative to each other. At the ordering
transition, the icosahedral order parameter Q6 increases from zero to a non-zero
value. For a shear flow, we find that Q6 is close to zero even for relatively dense flows
with volume fraction in the range 0.5–0.6 if the system size is sufficiently large. In
small systems, there is first an ordering transition at which Q6 increases in value, and
there is a subsequent disordering transition in which Q6 decreases to zero again as
the volume fraction is increased. However, if the system size is sufficiently large, the
system does not become ordered, as the close-packing volume fraction is approached
even for a normal coefficient of restitution of 0.98. This indicates that the structure
in a sheared granular flow is qualitatively different from that in an elastic fluid at
equilibrium. The random configuration is the more natural configuration for the
system, and ordering is observed only if the system size is small (Kumar & Kumaran
2006) or due to the presence of a flat wall at the boundaries of the flow (Delannay
et al. 2007).

The particle self-diffusion coefficient in the different directions was also calculated.
An intimate linkage was found between the ordering in the system and the diffusion
coefficient. When the system is random and the order parameter is small, the particle
motion is found to be diffusive, and the mean square displacement increases linearly
with time. When there is ordering in the system and the icosahedral order parameter
increases in value, it is found that the particle motion is not diffusive. The mean
square displacement in the flow direction increases faster than t , while the mean
square displacements in the other two directions increase slower than t . At the
ordering transition, we find that the diffusion coefficient decreases rather sharply to
zero. This suggests that previous simulation results, indicating that there is no diffusion
in sheared granular materials with volume fraction of above 55 % (Campbell 1997),
are valid only if the system size is sufficiently small, so that the icosahedral order
parameter is non-zero. In the random state, the diffusion coefficient is found to be
anisotropic, with the component in the flow direction Dxx larger than the other two
diagonal components Dyy and Dzz. The off-diagonal component Dxy was found to be
zero to within numerical accuracy. The diffusive nature of the particle motion was
further verified by calculating the intermediate structure factor, which showed a single
exponential decay with time.

An important result is that the velocity autocorrelation function in a shear flow of
inelastic particles decreases much faster than the expected t−3/2 long-time decay for
a fluid of elastic hard spheres at equilibrium, and the time period for the decay of
the autocorrelation function is smaller than the inverse of the strain rate, γ̇ −1. There
was an earlier prediction (Kumaran 2006c) that the velocity autocorrelation function
should decay as t−9/2 in a dense granular flow because energy is not conserved
over length scales that are large compared to the conduction length. While the
decay in the velocity autocorrelation function is faster than the t−3/2 decay for an
inelastic system, the scaling law cannot be definitively verified because the decay is
very fast and because the time window over which the scaling is observed is not
sufficiently long. However, the present simulations do indicate that the decay of
the velocity autocorrelation in a dense granular flow is much faster than the t−3/2

decay expected for a normal fluid. This implies that the divergence of the transport
coefficients due to correlations in an elastic fluid may not be present in the granular
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flow of inelastic particles (Ernst et al. 1978; Kumaran 2006c, 2009a, b; Orpe et al.
2008).

The dependence of the collision frequency on the volume fraction was analysed in
some detail. It is usual to express the results in terms of the pair distribution function,
which is normally calculated from the collision frequency, assuming a Gaussian
distribution for the relative velocities of colliding particles. In part 2, we find that
the relative velocity distribution is not a Gaussian distribution, and so we analyse a
suitably scaled collision frequency itself, rather than the pair distribution function.
It is found that close-packing volume fraction φad at which the collision frequency
diverges is lower than the random close-packing value of φc = 0.64. The close-packing
volume fraction, φad , decreases as the coefficient of restitution decreases, and it has
a minimum of about 0.585 for rough particles for coefficients of restitution in the
range 0.6–0.8. The power-law divergence of the collision frequency is also found to
be different from that for a fluid of elastic particles. This is a significant finding,
since most kinetic theories so far have assumed that the divergence of the pair
distribution function near close packing is the same as that for an elastic hard-sphere
fluid.

It was found that all components of the stress and the dissipation rate have the
same divergence as the collision frequency as the limit of random close packing is
approached. This is in contradiction with previous studies which have concluded that
either the viscosity and the pressure diverge at different volume fractions (Khain 2007;
Khain & Meerson 2006), or the shear viscosity diverges with a power law different
from that for the pressure (Bocquet, Errami & Lubensky 2002). The system considered
by Khain (2007) was two-dimensional, and the difference in divergence was due to
the constraints on shearing motion of a hexagonally close-packed state. One possible
reason for this disagreement is that the sheared inelastic fluids is in the random state
in which there is no orientational order. A distinction should also be drawn between
the volume fraction for the divergence of the pressure in an equilibrium fluid and
that in a sheared inelastic fluid. It is clear that the pressure in an equilibrium elastic
fluid of hard spheres diverges at the random close-packing volume fraction of 0.64,
whereas the shear viscosity in a sheared inelastic fluid diverges at a lower volume
fraction. What we find, here, is that both the pressure and the shear viscosity in a
sheared inelastic fluid diverge at the same volume fraction. The collision frequency
and the dissipation rate also diverge at the same volume fraction, and the functional
form of the divergence is the same in all cases.

The Chapman–Enskog theory is able to qualitatively predict the variation of
the stress components and the dissipation rates if the collision frequency from the
simulations is incorporated in the theory. There is even a reasonable quantitative
agreement for en = 0.9. However, for other coefficients of restitution, there are
quantitative differences. In particular, the rate of dissipation of energy is predicted
to be significantly larger than the simulation results. While there has previously
been speculation that this difference is due to correlations, in part 2, we examine
another possible reason for this difference, which is the change in the form of the
distribution of relative velocities at collision. Since the transport in a dense granular
flow is dominated by the collisional transfer of momentum and energy, any change
in the form of the relative velocity distribution could affect the transport rates. In
particular, the collision frequency, stress and dissipation rate are proportional to the
first, second and third moments of the pre-collisional relative velocity distributions
respectively. In the Enskog theory, it is assumed that the distribution of relative
velocities is a Gaussian distribution. If the actual velocity distribution decreases
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faster than a Gaussian, the theory would predict a larger dissipation rate than that
observed in simulations and experiments. Therefore, we examine the relative velocity
distributions in detail in part 2 and then recalculate the stresses and dissipation
rate.
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