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Three variants of Oldroyd-B model are analyzed for stability of the base profile in plane Couette
flow of dilute polymeric fluid at moderate Reynolds number. The stability to two-dimensional
disturbances is analyzed for the linearized problem as well as the weakly nonlinear flow. We begin
with the classical Oldroyd-B model with emphasis on the disturbances with axial wavenumber
��Re1/2, where Re is the Reynolds number based on maximum velocity and channel width. For
linearly stable flow, the finite amplitude stability is analyzed using the equilibrium flow method,
wherein the nonlinear flow is assumed to be at the transition point. For the classical Oldroyd-B fluid,
the threshold kinetic energy for the equilibrium wall mode disturbances is found to be higher for the
viscoelastic fluid than for the Newtonian fluid. In the second variant, the Oldroyd-B model with
additional artificial diffusivity is studied. In this model, the diffusion modes, not present in the
classical Oldroyd-B model, are introduced. For large wavenumber disturbances, the diffusion modes
become the slowest decaying modes in comparison to the wall modes. The threshold energy for the
diffusive Oldroyd-B model is smaller than that for the Newtonian fluid. The third variant of the
Oldroyd-B model accounts for the nonhomogeneous polymer concentration coupled with the
polymeric stress field. While the base profile is linearly stable for the first two models, the
nonhomogeneous Oldroyd-B fluid exhibits an instability in the linear analysis. The “concentration
mode” becomes unstable when the fluid Weissenberg number exceeds a certain transition value.
This mode of instability, driven by the stress-induced fluctuations in polymer number density,
renders the uniform polymer concentration profile unstable leading to the well-known phenomenon
of flow-induced demixing. © 2009 American Institute of Physics. �DOI: 10.1063/1.3063893�

I. INTRODUCTION

Interactions between the hydrodynamics and the poly-
mer chains have been an object of research for many de-
cades. Several investigations have been carried out in differ-
ent flow regimes, many motivated by and with the intention
to gain an in-depth understanding of the familiar phenom-
enon of turbulent drag reduction by polymer molecules in a
fully developed turbulent flow. In turbulent flows, the flow in
the region nearby the wall is laminar. Hence, the influence of
polymer chains on laminar flow is believed to help elucidate
the role of polymers in wall-bounded turbulent flows. The
analysis of stability is the classical approach to study the
transition to turbulence, although the gap between the insta-
bility and the fully developed turbulence is one of the major
challenges in fluid mechanics.

First, we briefly review the role of stability analysis in
addressing the problem of laminar to turbulent transition in a
plane Couette flow of a Newtonian fluid. The transition in
this apparently simple shear flow is rather complex and is not
yet understood completely. The difficulty is due to the fact
that the plane Couette flow is linearly stable, whereas in
practice the flow undergoes transition at a finite Reynolds
number. At high Reynolds number, the viscous effects in
disturbance flow field are confined to a thin layer of thick-
ness O�� Re�−1/3 times the channel width.1,2 This layer is
known as the wall layer and the disturbance modes the wall
modes. Here, � is the axial wavenumber of perturbation and

Re is the Reynolds number. Based on the stability analysis of
the wall modes, it is now widely accepted that the plane
Couette flow is linearly stable and the observed transition to
turbulence is triggered by the disturbances of finite
amplitude.3 Due to the lack of transition Reynolds number,
the finite amplitude state bifurcates from infinity resulting in
a subcritical instability leading to transition to turbulence.
The earlier weakly nonlinear analyses suggested the presence
of two-dimensional �2D� finite amplitude instability charac-
terized by a threshold amplitude.4,5 However, numerical
simulations that examine the time evolution of the 2D distur-
bances in a plane Couette flow do not show the existence of
the finite amplitude instability. The simulations suggest that
the three-dimensional �3D� effect is necessary for the initial
disturbance to develop and instability and result in a sus-
tained turbulence.6 These numerical solutions do not confirm
the existence of 2D finite amplitude instability predicted by
the weakly nonlinear stability analyses of Refs. 4 and 5. This
led to search for 3D nonlinear solutions for a plane Couette
flow using homotopy from the other flows such as plane
Poiseuille and Taylor–Couette flows. Both steady and
traveling-wave solutions have been discovered7,8 that match
with the experimental data on transition to turbulence. Addi-
tionally, the existence of 2D steady solution as the equilib-
rium state has also been shown, although its participation in
transition to turbulence remains doubtful.9 By and large it is
now established that in the absence of a linear instability,
sustained turbulence is generated from a 3D finite amplitude
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state. In the present study, we analyze the linear and weakly
nonlinear stability of a viscoelastic flow. Since it is known
that a viscoelastic flow does exhibit linear instability, we
restrict our analysis to 2D disturbances. For a Newtonian
flow, the finite amplitude 2D traveling-wave solution exists
as the equilibrium state.4,5 For this case, the threshold energy
for the subcritical transition was shown to be minimum for
critical disturbances with wavenumber ��Re1/2. In the
present analysis, we seek to examine the influence of poly-
mer chains on the threshold energy.

Motivated by the phenomenon of polymer melt fracture
during extrusion, the stability of inertialess flow of various
model polymers has been analyzed by many in order to es-
tablish the flow instability as the cause for observed break-
age. For a plane Couette flow in the limit of zero Reynolds
number, Gorodtsov and Leonov10 showed analytically that a
viscoelastic fluid described using the upper convected Max-
well �UCM� model is stable to infinitesimal disturbances for
any arbitrary Weissenberg number �the relaxation time of
dumbbells nondimensionalized with the flow time scale�.
Renardy11 provided a rigorous proof of linear stability of this
flow. Also, for small nonzero Reynolds number, the flow is
found to be linearly stable.12,13 However, the nonlinear inter-
actions of the polymer stress and the fluid velocity field can
give rise to finite amplitude instability. For linearly stable
flows, the methodology proposed by Reynolds and Potter14

can be used to find the finite amplitude equilibrium solution
of the disturbance equations. Using this method of equilib-
rium flow for polymer melts described as UCM fluids, Moro-
zov and Saarloos15 estimated the threshold amplitude for
subcritical transition in small Reynolds number flow. The
convergence of the threshold amplitude was shown by incor-
poration of higher order terms in the amplitude equation. For
dilute solutions, the presence of small amount of polymer
molecules in otherwise Newtonian fluid has profound effect
on the flow behavior. The addition of long-chain molecules
significantly modifies the stability characteristics of a plane
Poiseuille flow.16,17 The effect of fluid elasticity on the criti-
cal Reynolds number for this flow shows an opposite behav-
ior around a critical elasticity parameter, below which the
effect is destabilizing and above which it is stabilizing.

As we continue the Newtonian wall modes to viscoelas-
tic fluid, we observe that for axial wavenumber of the order
�Re1/2�, the discrete wall modes are interfered by the pres-
ence of the continuous spectra. The disturbance equation for
the Oldroyd-B fluid exhibits singularity along the two con-
tinuous spectra of eigenmodes which are always stable.13,18

The singular eigenfunctions corresponding to these continu-
ous spectra are expressed in terms of Dirac distribution func-
tions for polymer stress components.19 Being divergence-
free, these solutions do not impact the fluid flow field. While
the singular modes are linearly stable, there is an indication
of transient growth due to the non-normal nature of operator
in the Oldroyd-B model. Kupferman19 discussed the need to
introduce a weak artificial diffusivity to attenuate strong os-
cillations in polymer stress field in cross-flow direction. A
rigorous proof of stress diffusion being necessary for the
existence of solutions for viscoelastic fluids is given in Ref.
20. For time-dependent numerical simulations of viscoelastic

flows, an additional artificial diffusion of polymer conforma-
tion tensor is usually incorporated in the classical Oldroyd-B
model to regularize the governing equations.21,22 Incorporat-
ing diffusion with any arbitrary small amount of diffusivity
D is found to destroy the continuous spectra.17,18

Most polymeric flows in reality are nonhomogeneous;
i.e., the velocity gradient, the polymer distribution, and the
components of conformation tensor and hence the stress vary
spatially in the flow domain. Different parts of a long-chain
molecule can be subjected to different forces and polymer
number density can be different near the wall and away from
the wall. In the diffusive Oldroyd-B model, while the diffu-
sion of polymer conformation tensor is allowed, the polymer
concentration is assumed to be spatially uniform. Physically,
diffusion is a consequence of local inhomogeneity in concen-
tration. It is, therefore, appropriate to incorporate the poly-
mer concentration fluctuations in the stability analysis.
Moreover, the homogeneous model, with uniform polymer
distribution, fails to capture the observed phenomenon of
polymer migration induced by the stress gradient. Hence, a
model considering the nonuniform polymer number density
n as an additional variable should be more realistic. A model
capturing the rheology and mass transfer phenomena in di-
lute polymer solutions with spatially varying distribution of
elastic dumbbell molecules has been derived by a number of
researchers using the principals of kinetic theory23 as well as
using the principles of continuum mechanics24 and nonequi-
librium thermodynamics.25 The comparison and the compat-
ibility of the outcome of the different approaches to derive a
continuum scale model for nonhomogeneous polymer solu-
tion are discussed comprehensively by Beris and
Mavrantzas.26 The nonhomogeneous Oldroyd-B model ex-
hibits stress-concentration coupling and hence accounts for
stress-induced migration of polymer molecules apart from
polymer chain diffusion. The stability of the flow of nonho-
mogeneous polymer solutions is not widely studied. Aposto-
lakis et al.27 analyzed the stress-induced migration of the
polymer molecules in the base flow in Taylor–Couette geom-
etry. The migration, which is away from the outer cylinder
toward the inner one, is in agreement with the experimental
observations.28,29 The role of concentration fluctuations in
Taylor–Couette flow instability was found to be dramatic.
Unstable modes qualitatively different from that present in
the flow of uniform polymer solution were found to destabi-
lize the system at lower elasticity parameter �Deborah num-
ber, the dimensionless fluid relaxation time� than its critical
value for the homogeneous Oldroyd-B fluid.27 Other works
that make use of the coupled distribution between the poly-
mer concentration and stress include Refs. 30–32. The iner-
tialess flow of Maxwell fluid is stable for all values of elas-
ticity parameter.10 For the nonhomogeneous polymer
concentration and a wall slip, Black and Graham31 found an
unstable “concentration mode” leading to an instability at a
finite Weissenberg number.

In the present work, we perform linear and weakly non-
linear stability analyses of the planar shear flow of dilute
polymeric solutions. The viscoelasticity is described by three
progressively rigorous variants of an Oldroyd-B model, viz.,
the classical Oldroyd-B fluid, uniform Oldroyd-B fluid with
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stress diffusivity, and nonhomogeneous Oldroyd-B fluid. The
later model allows for the concentration fluctuations coupled
with the polymeric stress. In the larger context, this coupling
is at the center of many mechanisms to explain various
stress-induced phenomena in the field of polymer physics.
Flow can greatly influence the phase behavior of polymeric
solutions and blends. Shear-induced mixing and demixing
both have been observed depending on the temperature.33,34

Various effects of demixing such as polymer chain migration
in curvilinear flows, stress-induced diffusion in wall-
bounded flows, and concentration fluctuations leading to tur-
bidity have all been investigated thoroughly over last few
decades. The comprehensive reviews of flow-induced trans-
formations in the structure of polymeric fluids have been
presented by Rangle-Nafaile et al.35 and Larson.36 A more
recent review can be found in Ref. 37. As we will see later in
this paper, the uniform concentration profile tends to become
unstable beyond a certain Weissenberg number leading to
demixing manifested by an enhanced scattering. This work
finds its significance in the context of shear-induced transfor-
mations in polymeric fluids reported by Larson.36 Beginning
with the quasithermodynamic description introduced by
Rangle-Nafaile et al.,35 the theoretical framework for the
flow-induced concentration fluctuations has undergone many
refinements. Much of the present understanding is based on
the statistical mechanical theory of Helfand and
Fredrickson38 and its extensions to the continuum scale two-
fluid models by many investigators �Onuki,39,40 Doi and
Onuki,41 Milner,42 Bhave et al.,23 Mavrantzas and Beris,25

etc.�. Recently, Minale43 employed the modified two-fluid
model to predict a true phase separation induced by a steady
flow in polymer solutions. The coexistence of shear-induced
phases and their instability in surfactant systems has been
studied by Olmsted and Lu44 and Fielding and Olmsted.45

Overall, the present literature is rich in studies in flow-
induced phase transitions and structural changes in poly-
meric and other complex fluids. This paper makes a contri-
bution toward the onset of instability in uniform
concentration profile leading to demixing and possibly phase
separation.

The rest of this paper is organized as follows. The gov-
erning equations of variants of the Oldroyd-B model used in
the present study are provided in Sec. II. The methodology
and the solution procedure are explained in Sec. III. In Sec.
IV, the results of the linear and weakly nonlinear stability
analyses are discussed for the classical Oldroyd-B, the diffu-
sive Oldroyd-B, and the nonhomogeneous Oldroyd-B fluids.
Section V summarizes important conclusions from the
present work.

II. MODEL EQUATIONS

A. Classical Oldroyd-B model

The system consists of a plane Couette flow of an in-
compressible viscoelastic fluid with zero shear viscosity �
occupying the domain 0�y��L in the cross-stream direc-
tion, with top plate moving with constant axial velocity v̄x

�

=V and bottom plate held stationary. The fluid continuity
equation and momentum balance equation, upon nondimen-

sionalizing velocity with V, distance with L, time with L /V,
pressure with �V2, and stresses with �V /L, become

� · v = 0, �1�

�tv + v · �v = − �p +
1

Re
� · �s +

1

Re
� · �p. �2�

The Reynolds number is defined, based on solution viscosity,
as Re=�VL /�. For viscoelastic fluid, the stress tensor con-
sists of viscous stress ��s� and polymeric stress ��p�. The
viscous stress arising due to the solvent viscosity ��s� is
given by Newton’s law,

�s = � ��v + ��v�T� , �3�

where the superscript T indicates the transpose and �
=�s /� indicates the solvent contribution to the solution vis-
cosity �, where �=�s+�p. The polymer contribution is in-
dicated by �1−��, which is proportional to the polymer con-
centration in the solution.

The classical Oldroyd-B model can be derived from the
microscopic description using the concepts of kinetic
theory46 as well as from the phenomenology, such as
Maxwell’s spring-dashpot model, with the assumption of
spatially uniform configuration distribution of the polymer
molecules in homogeneous flow field. The polymer chain is
microscopically described as a linear elastic dumbbell with
two beads at ends connected via an entropic spring. The
polymer constitutive relation is expressed in terms of statis-
tically averaged properties of chain over all possible configu-
rations in the flow field. The characteristic length scale of a
polymer chain is end-to-end distance �Q ·Q�1/2. The confor-
mation tensor, defined as cij

� = �QiQj�, is obviously a symmet-
ric and positive definite tensor. Here, the superscript “�” in-
dicates a dimensional quantity. The conformation tensor is
governed by a simple relaxation law with time constant �
toward thermal equilibrium conformation c�eq,

Dtc
� = −

�c� − c�eq�
�

. �4�

In order to make the above constitutive relation reference-
frame indifferent, the material time derivative is the upper
convected derivative defined as

Dt�c
� = �t�c

� + v� · �c� − c� · ��v�� − ��v��T · c�. �5�

Here, the equilibrium conformation c�eq= �kBT /H��ij and the
relaxation time of the viscoelastic fluid �=� /H, with H being
the spring constant of the elastic dumbbells, � being micro-
scopic friction coefficient of beads, and kBT being the ther-
mal energy.

The polymeric stress is proportional to the departure of
chain conformation from thermal equilibrium conformation,

	�p =
�pH

�kBT
�c� − c�eq� . �6�

Upon nondimensionalizing c with �kBT /H�, �p with �V /L
and time with L /V, the classical Oldroyd-B model is de-
scribed by
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Dtc = −
�c − I�

W
, �7�

	p = �1 − ��
�c − I�

W
, �8�

where the Weissenberg number, which is indicative of the
fluid elasticity, is defined as W=�V /L and I is an identity
tensor. The overall fluid governing equations thus become

�tv + v · �v = − �p +
�

Re
�2v +

�1 − ��
Re W

� · c , �9�

�tc + v · �c − c · ��v� − ��v�T · c = −
�c − I�

W
. �10�

B. Diffusive Oldroyd-B model

The hyperbolic nature of the evolution equation for the
conformation tensor �Eq. �7�� results in the perturbation
equation with singularities leading to branch cut in the eigen-
value space.13 Moreover, the above classical Oldroyd-B
model poses numerical problems while performing time-
dependent simulation of the Oldroyd-B fluid. Hence, it is
generally agreed to introduce an artificial diffusivity to sta-
bilize the numerical scheme. Thus, the classical Oldroyd-B
model is modified by an additional diffusive term in the gov-
erning equation for the conformation tensor as

Dtc = −
�c − I�

W
+

1

Pe
�2c , �11�

where the Péclet number is defined as Pe=LV /Dtr, with Dtr

being the translational diffusivity of the polymer chain.
The addition of diffusive term necessitates boundary

conditions for the conformation tensor to be specified. The
state of polymer chain and the extent of its stretching at the
walls remain uncertain. The Monte Carlo simulations of
equilibrium and nonequilibrium distributions of polymer so-
lutions confined between the parallel plates indicate that the
presence of a solid wall affects configurations of the polymer
molecules in a narrow region of thickness comparable to the
average radius of gyration of polymer molecules close to the
wall.47 Different researchers have used different types of
boundary conditions for the components of the conformation
tensor. Sureshkumar and Beris16 applied the classical
Oldroyd-B governing equation �7� at the walls. Black and
Graham31 employed no-flux boundary condition, i.e., confor-
mational flux Jc=vc− �1 /Pe��c=0 across the walls. Bhave
et al.23 introduced the molecular orientation near wall simply
by requiring the elastic dumbbells to be parallel to the wall
as a boundary condition. Thus, the polymer chain is assumed
to be stretched along the flow direction with its length Q0 as
an arbitrary parameter. In the present study, we use the first
two kinds of boundary conditions, i.e., enforce the
Oldroyd-B governing equation without diffusion term at the
walls, and specify zero flux of polymer conformation in the
wall-normal direction.

C. Nonhomogeneous polymer solution model

Since the polymer chain diffusion is a consequence of
local nonhomogeneity, previous models, which are based on
the assumption of spatial uniformity of polymer distribution,
are not reasonable when the diffusion effects are taken into
consideration. A model capturing the rheology and mass
transfer phenomena in dilute polymer solution with spatially
varying distribution has been derived by some researchers
using the kinetic theory approach23 as well as using the prin-
ciples of continuum mechanics24 and the nonequilibrium
thermodynamics.25 This model exhibits stress-concentration
coupling and hence accounts for stress-induced migration of
polymer molecules apart from molecular diffusion. The non-
dimensional momentum balance equation and the polymer
constitutive relation are as follows:

�tv + v · �v = − �p +
�

Re
�2v +

1

Re
� · �p, �12�

	p = �1 − ��
�C − nI�

W
, �13�

where n is polymer number density. Here, we use the number
density weighted conformation tensor C �=nc�, as against the
single chain conformation tensor c. The governing equation
for C is

DtC = −
�C − nI�

W
+

1

Pe
�2C . �14�

An alternate expression in terms of polymeric stress is

�p + WDt�
p + �1 − ���Dn

Dt
−

1

Pe
�2n	I =

W

Pe
�2�p + �1 − ��n
̇ ,

�15�

where 
̇ is the rate-of-strain tensor, 
̇= ��v+ ��v�T�. Finally,
the mass conservation equation for the polymer number den-
sity is as follows:

Dn

Dt
=

1

Pe
�2n −

1

�1 − ��
W

Pe
� �:�p. �16�

An alternate form in terms of C is

Dn

Dt
=

2

Pe
�2n −

1

Pe
� �:C . �17�

The polymer mass flux is given as

J = − � 1

Pe
� n −

1

�1 − ��
W

Pe
� · �p	 �18�

=− 
 2

Pe
� n −

1

Pe
� · C� . �19�

The boundary conditions for the conformation tensor have
been discussed in Sec. II B. The first kind of boundary con-
dition requires the conformation equation �14� with Pe→�
to be satisfied at the walls. The second kind specifies zero
conformation flux, dyC=0, at the surfaces. The polymer con-
centration satisfies the typical no-flux boundary condition
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at the surfaces, i.e., J=−2�n+� ·C=0, in the wall-normal
direction.

III. STABILITY ANALYSIS

For all three models discussed above, the steady-state
solution for the plane Couette flow is same and is as follows:

v = �y,0,0� , �20�

c = �1 + 2W2 W 0

W 1 0

0 0 1
, �p = �1 − ���2W 1 0

1 0 0

0 0 0
 . �21�

This base flow satisfies both the no-flux for conformation
tensor as well as the classical Oldroyd-B equation at the
walls. For the case of nonhomogeneous solutions, the base-
state polymer concentration is uniform with n̄=n0=1. For
this model, the mass-averaged conformation tensor is
C=n0c. We like to note that the base profile for polymer
concentration will be nonuniform if one chooses to use the
boundary conditions suggested by Bhave et al.,23 i.e.,

C̄xx=nwQ0
2, C̄xy = C̄xx=0 at the walls.

A. Linear stability

To study the temporal stability, the steady-state profile is
superimposed with the 2D classical normal mode perturba-
tions of infinitesimally small amplitude of the form

���x,y,t� = �̃�y�ei��x−ct�, �22�

where the general variable �= �v ,c ,n�T, � is the real-valued
axial wavenumber, and c is the complex wavespeed, the sign
of whose imaginary part is indicative of growth or decay of
the infinitesimal disturbance. Upon linearizing, we get the
following governing equations for disturbance eigenfunc-
tions in the classical Oldroyd-B model:

i��y − c�ṽx + ṽyy = − i�p̃ +
�

Re
�dy

2 − �2�ṽx

+
�1 − ��
Re W

�dyc̃xy + i�c̃xx� , �23�

i��y − c�ṽy = − dyp̃ +
�

Re
�dy

2 − �2�ṽy +
�1 − ��
Re W

�dyc̃yy + i�c̃xy� ,

�24�

i��y − c�c̃xx − 2i��1 + 2W2�ṽx − 2Wdyṽx − 2c̃xy = −
1

W
c̃xx,

�25�

i��y − c�c̃xy − i��1 + 2W2�ṽy − dyṽx − c̃yy = −
1

W
c̃xy , �26�

i��y − c�c̃yy − 2i�Wṽy − 2dyṽy = −
1

W
c̃yy . �27�

Substituting for the components of the conformation tensor
obtained by solving the algebraic equations �25�–�27� in the

fluid momentum balance equations and eliminating pressure
results in a single fourth order ordinary differential equation,

�1 − ����S2D2 − 2i�WSD − 2�2W2 − �2S2��D2 + 2i�WD

− 2�2W2 − �2�ṽy� + ��S3�D2 − �2�2ṽy�

− i� Re�y − c�S3�D2 − �2�ṽy = 0, �28�

where D=dy and S=1+ i�W�y−c�. The governing equations
are supplemented with no-slip conditions at the walls: ṽy

=dyṽy =0 at y=0 and y=1.
For the diffusive Oldroyd-B model, a diffusivity term

�1 /Pe��dy
2−�2�c̃ij is added on the right-hand side of Eqs.

�25�–�27�. The conformation equations for the nonhomoge-
neous model are similar to that for the diffusive model, with

c̃ being replaced by C̃ and an additional term �1 /W�ñ I on

the right-hand side. We do not write the equations for C̃ to
avoid repetition. The disturbance equation for the polymer

number density in terms of C̃ is given as

i��y − c�ñ + ṽydyn̄ =
2

Pe
�dy

2 − �2�ñ

−
1

Pe
�dy

2C̃yy − �2C̃xx + 2i�dyC̃xy� . �29�

B. Finite amplitude instability

For finite amplitude disturbances, the convective nonlin-
earities in the governing equations manifest themselves
through nonlinear self-interactions of eigenfunctions of the
linear analysis. The nonlinear analysis constructs a branch to
the stability curve in the amplitude direction using an equa-
tion, referred to as the Landau equation, of the form

dA

dt
= s�0�A + s�1�A�A�2 + ¯ , �30�

where s�0� is the linear growth of small disturbances and s�1�

is the higher order correction to the linear growth rate,
known as the Landau constant. In terms of wavespeed
s�0�=�ci, where ci is the imaginary part of the complex
wavespeed. For flows which are linear unstable, s�1� provides
the nature of bifurcation at the transition point, that is, ci=0.
Following the formulations given by Stuart48 and Watson,49

in the vicinity of the transition point the flow variables are
expanded in harmonic-amplitude series,

��x,y,t� = �̄�y� + �
k=0

�

�
n=k,n�0

�

�A�t��n

��̃�k,n��y�eik��x+�t� + �̃�k,n�†
�y�e−ik��x+�t�� , �31�

where �= �v ,c ,n�, �̄ is the base flow quantity, and super-
script “†” denotes the complex conjugate. The frequency of
the disturbance �=−�c. Here, k denotes the harmonic index
and n denotes the amplitude order. Substituting above expan-
sion in the governing equations and extracting terms at vari-
ous harmonic-amplitude orders �k ,n� give rise to the ampli-
tude equation �30�, consequently the Landau constant s�1� is
obtained.
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For flows which are linearly stable, e.g., the plane Cou-
ette flow, Reynolds and Potter14 suggested the equilibrium
flow method. Here, instead of the linear flow, the nonlinear
flow is assumed to be at the point of transition, such that
dA /dt=0. In this formulation, the disturbance frequency is
expanded in amplitude as

� = − �c − ��A2 + O�A4� , �32�

where � is the correction to the linear wavespeed c. For
nonlinear steady-state flow, the frequency is a real quantity,
and we get the equilibrium amplitude as

Ae
2 = −

ci

�i
. �33�

Since ci�0 for linearly stable flows, a real-valued amplitude
exists only if �i�0, which means that the transition occurs
through subcritical instability. The disturbances with ampli-
tude larger than Ae grow with time. The threshold kinetic
energy required for the finite amplitude instability is defined
as

E =
Ae

2

2
�

0

1

�ṽy
2 + ṽx

2�dy . �34�

The equilibrium flow method has been used previously to
estimate the threshold energy for subcritical instability in the
plane Couette flow of Newtonian fluid.5 The destabilizing
effect of the nonlinearities in the plane Couette flow was
further confirmed by Davey50 using the above described
method. In recent times, Morozov and Saarloos15 employed
this formulation to analyze the creeping flow of Maxwell
fluid under shear. They also show that the inclusion of higher
order terms in frequency expansion equation �32� does not
significantly affect the stability behavior, which indicates
that the expansion series �32� does converge for the flow they
considered.

C. Numerical scheme

The most important part of this analysis is obtaining the
eigenvalues of the linearized problem. Since by nature the
classical Oldroyd-B model exhibits strong oscillations in
polymeric stress in the cross-flow direction, the under-
resolved numerical scheme may show spurious instabilities,
especially in the limit of high Weissenberg number19 for the
causes of spurious eigenvalues. In the present work, we con-
vert the boundary value problem with unknown eigenvalues
to initial value problem with unknown single eigenvalue us-
ing the shooting technique. The governing equations are in-
tegrated in the wall-normal direction using the Runge–Kutta
method on an adaptive grid, and the unknown eigenvalue is
calculated using the Newton–Raphson technique. This
method provides a single eigenvalue in the vicinity of the
initial guess value. As the grid size is adaptive, the eigenval-
ues are very accurate. This technique has been used success-
fully to calculate the wall mode eigenvalues for the shear
flow past a flexible surface.51,52

While the dominant eigenvalue is calculated using the
shooting method, we also use the Chebyshev-collocation
technique to construct the entire eigenspectrum. The resolved

eigenvalues of this spectrum are verified using the shooting
method. The Chebyshev expansion to capture the variations
in the Fourier modes in the cross-flow direction results in a
generalized eigenvalue problem of the form

L�̃ = cM�̃ , �35�

where L and M are the linear operators. The eigenspectrum
in wavespeed c is obtained using the QZ algorithm. The
eigenmode is stable if the imaginary part of wavespeed ci

�0, where as ci�0, suggests linear instability. In later case,
the neutral stability curve can be constructed by setting
ci=0.

IV. RESULTS AND DISCUSSION

A. Classical Oldroyd-B model

For a plane Couette flow of Newtonian fluid in the limit
of high Reynolds number, the eigenmodes are confined to a
thin layer near the walls within which the viscous and iner-
tial stresses are comparable. This thin layer of thickness
O�� Re�−1/3 is referred to as the wall layer and the eigen-
modes the wall modes. The wall modes are believed to be
linearly stable,3 which means that the imaginary part of the
wavespeed ci is negative for all the modes. The damping rate
is −�ci. The value of ci reaches closest to zero for axial
wavenumber ��Re1/2 for Re�1.3 Figure 1 plots ci Re1/2

against � Re−1/2 for the first three least stable wall modes.
The curves for different Reynolds numbers collapse on to a
single curve on the coordinates scaled with Re for Re�1.
This plot is similar to the one shown in Ref. 3. For finite
amplitude disturbances, the threshold kinetic energy for sub-
critical instability can be calculated. The kinetic energy, de-
fined in Eq. �34�, scales as Re−3/2 for Re�1. The threshold
energy as a function of axial wavenumber is shown in Fig. 2
on the scaled coordinates. The disturbance kinetic energy is
shown to be minimum for ��Re1/2 for different values of
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Reynolds number. Thus, the most dangerous disturbance has
wavelength comparable to the thickness of the wall layer
which is O�Re−1/2�.4,5

The transition mechanism is believed to involve the 3D
structures near the wall. Moreover, the full numerical simu-
lations of 2D wall mode disturbances do not lead to self-
sustaining turbulence.6 Therefore, it is important to calculate
the threshold energy for the 3D disturbances. Figure 3 shows
the threshold energy as a function of axial wavenumber for
different values of spanwise wavenumber �z. Here, �z=0
indicates the 2D disturbance. The threshold energy for the
oblique traveling waves in x−z plane, that is, with ���z

�0, is found to be higher than the energy for axially travel-
ing 2D disturbances. Although the simulations of Orszag and
Kells6 show that the initial disturbances must have a 3D
disturbance in addition to a 2D disturbance, the amplitude of
the 3D component is very small compared to the initial am-

plitude of a 2D component. Thus, the requirement of a 3D
component appears to be to create 3D structures necessary
for turbulence. However, for the onset of transition, the am-
plitude of a 2D component may provide the threshold
criterion.

The effect of polymer additives on the wall mode distur-
bance is studied by numerical continuation of the wavespeed
corresponding to the least stable Newtonian wall mode to
viscoelastic fluid described by the classical Oldroyd-B equa-
tion �28�. The variation in ci with fluid Weissenberg number
is shown in Fig. 4 for axial wavenumber �=0.6 Re1/2 and
polymer viscosity parameter �=0.95. This figure shows a
single curve on to which the plots for different Reynolds
number collapse. For the classical Oldroyd-B fluid, there ex-
ist two continuous spectra of eigenvalues with wavespeeds
c=y− i / ��W� and c=y− i / ���W� attributed to the singularity
in the perturbation equation �28�. The second spectrum is a
branch cut in eigenspectrum space across which the discrete
eigenvalues appear and disappear upon changing parameters
such as �, �, and W.13 In Fig. 4�b�, the first three wall modes
are seen to merge with the continuous spectrum and disap-
pear at W�1. On the other side with W�1, a new discrete
eigenvalue emerges from the continuous spectrum. The
variation in ci for the least stable wall mode with wavenum-
ber is shown in Fig. 5. This figure further demonstrates the
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disappearance and the appearance of a discrete mode across
the continuous spectrum. The least stable eigenvalue merges
with the continuous spectrum and disappears before ci ap-
proaches maximum. The mode that emerges out of the con-
tinuous spectrum, however, approaches close to the point of
neutral stability with a decay rate much lower than that for
the Newtonian fluid.

The weakly nonlinear stability of the classical
Oldroyd-B fluid is analyzed by calculating �, the nonlinear
contribution to the linear wavespeed, using the method of
Reynolds and Potter.14 The nonlinear flow undergoes transi-
tion only if the imaginary part �i is positive. The calcula-
tions show that �i is positive for a small wavenumber range
before the polymeric wall mode merges with the continuous
spectrum. Even before merging, the sign of �i turns to nega-
tive. Figure 6 plots the threshold kinetic energy for a range of

wavenumbers for which �i�0, that is, the finite amplitude
correction to the linear growth rate is destabilizing. Compari-
son with Fig. 2 indicates that this range of wavenumbers is
narrow for the polymeric flow. The disturbance energy re-
quired for the subcritical instability is higher for the vis-
coelastic fluid than for the Newtonian fluid. Increasing the
flow elasticity and addition of polymers tend to increase the
threshold energy, as shown in Fig. 6 for increasing Weissen-
berg number and decreasing �, respectively. Thus, for a
specified strength of wall mode disturbance, the addition of
polymer molecules to the Newtonian fluid delays the transi-
tion to turbulence. Also seen for the figure is that the most
dangerous disturbance is likely to have smaller wavenumber
than that for the Newtonian flow.

B. Diffusive Oldroyd-B model

By addition of a diffusivity term in the conformation
tensor equation �11�, the continuous spectrum is destroyed
and we witness only the discrete modes. As shown in Fig. 7,
the wall mode, qualitatively similar to the Newtonian wall
mode �indicated as mode 1�, continues for large wavenum-
bers, even past the continuous spectrum line �existing for the
classical Oldroyd-B model�. This mode attains the least
damping rate at ��1.3 Re1/2 as against ��0.63 Re1/2 for
the Newtonian fluid. However, there exists another mode �in-
dicated as mode 2� which becomes dominant to mode 1 at
large wavenumber. This mode is qualitatively different from
the Newtonian wall mode, since it does not continue to the
Newtonian wall mode as � approaches unity. Figure 8 shows
the eigenspectrum for both the classical Oldroyd-B model as
well as the diffusive Oldroyd-B model. Upon incorporation
of stress diffusivity, the destruction of the continuous spectra
present in the classical Oldroyd-B model is clearly visible.
Also, the dominance of mode 2 over mode 1 is also shown in
Fig. 8�d�. The Chebyshev expansion with number of collo-
cation points N=120 is used to construct the eigenspectra
which remained unchanged upon increasing the resolution.
We have used the no-flux boundary condition for the confor-
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mation tensor equation to generate the results for the diffu-
sive Oldroyd-B model. However, we find the results to be
qualitatively similar for the other type of boundary condition,
that is, enforcing the classical Oldroyd-B equation at the
walls. The typical structure of eigenfunctions corresponding

to the diffusion mode is shown in Fig. 9 for both the types of
boundary conditions. The eigenfunctions are obtained by us-
ing the normalization condition c̃xy �y=0=1. Only the real
parts of the disturbances ṽx, c̃xy, and c̃xx are shown. As seen,
the disturbances are confined to a narrow region near the
wall.

Since mode 2 is found to be the slowest decaying mode
for wavenumber proportional to Re1/2, its origin needs to be
examined. To start with, the effect of Péclet number on this
mode is studied. We find that the imaginary part of
wavespeed corresponding to this mode decreases propor-
tional to Pe−1/2. Figure 10 shows the variation in ci with
wavenumber. The curves for Pe=104 and Pe=106 fall on a
single curve when ci is scaled with Pe−1/2 and wavenumber
with Pe1/2. This scaling of wavespeed can be obtained by
comparing the orders of various terms in the conformation
tensor governing equation �11�. The diffusion term is com-
parable to the convective and the relaxation terms in a nar-
row region of thickness l�O�W /Pe�1/2. This region is the
diffusion layer for the conformation tensor, hence we refer to
this mode as “diffusion mode.” For a creeping flow of UCM
fluid, Gorodtsov and Leonov10 found two discrete eigen-
modes �GL modes�, known in literature as the elastic modes.
A pair of least stable diffusion mode is believed to be quali-
tatively similar to the GL modes modified by the diffusion
term and fluid inertia. For low wavenumber case with �
�O�1�, the diffusion mode decays much faster than the wall
mode �see Fig. 7�, and hence can be ignored. However, for
large wavenumber disturbances, which is the focus of
present analysis, the diffusion mode becomes less stable than
the wall modes. For Pe�Re, the thickness of diffusion layer
l is smaller than the length scale of wall modes, which is
���� Re�−1/3. For this case, in the fluid momentum equation
�9�, the viscous stresses balance with the elastic polymeric
stresses within the diffusion layer and the inertial terms be-
come subdominant in this region. Consequently, the flow
Reynolds number does not influence the eigenmode appre-
ciably, which was evident from Fig. 10, wherein the values
of ci for Re=2000 and 10 000 are seen to be very close.
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The finite amplitude stability was analyzed for the diffu-
sion mode, and it is found that the nonlinear correction �i is
positive for a range of wavenumber much wider than for the
wall modes. Figure 11 shows the threshold energy as a func-
tion of wavenumber for a typical case of Re=2000 and
Pe=104. A comparison with Fig. 6 for the wall mode shows
that the threshold energy for the diffusive Oldroyd-B fluid is
lower in magnitude than that for the classical Oldroyd-B
fluid. As shown in Fig. 11, the threshold energy attains a
minimum for ��Re1/2 for the given set of parameters. Also
seen from the figure is that the threshold kinetic energy is
lower for fluid with higher Weissenberg number.

C. Nonhomogeneous polymer solution model

A more rigorous model involving the diffusion effects of
the polymer chains should account for the local nonhomoge-
neity of polymer concentration. The stability of base flow
profiles for the nonhomogeneous Oldroyd-B model is ana-
lyzed for two kinds of boundary condition for the conforma-
tion tensor: �1� enforce the governing equation for conforma-
tion tensor �Eq. �14�� with Pe→� at the walls; and �2� zero
flux of conformation tensor �dyC=0� across the walls. The
steady-state solution for both these boundary conditions is
identical and is same as that for the previous two models,
meaning the polymer conformation as well as the concentra-
tion is uniform across the channel. For the first kind of
boundary condition, Fig. 12�a� shows the effect of fluid elas-
ticity on the imaginary part of wavespeed ci for the least
stable mode. As ci changes sign, the base profile becomes
unstable when Weissenberg number exceeds a certain transi-
tion value Wt given by ci=0. The transition Weissenberg
number is higher for larger values of Péclet number and for
Pe�106, the instability ceases to exist. Figure 12�b� shows
the neutral stability curve in Wt-� plane. The minimum on
this curve gives the critical point with critical Weissenberg
numbers Wc and �c. For the first kind of boundary condition,
the critical point lies on the large wavenumber plateau. For
the no-flux condition, the stability behavior is shown in

Fig. 13. Here also, the instability is observed for W�Wt. For
this case, the transition value Wt attains a minimum value for
a finite wavenumber, as shown in Fig. 13�b�. The critical
Weissenberg number is lowered by adding more polymer
molecules to the solution, i.e., by reducing �.

The unstable mode for the nonhomogeneous solutions is
the concentration mode giving rise to the demixing due to
strong concentration fluctuations near the walls. By demix-
ing we mean that the uniform profile for the polymer number
density tends to become unstable beyond the point of transi-
tion. Figure 14 shows a typical eigenspectrum showing a pair
of unstable eigenmodes traveling downstream at a speed
close to the base flow velocity near the walls. The first few
least stable eigenvalues are listed in Table I for both kinds of
boundary condition for polymer conformation. The concen-
tration mode instability is governed mainly by the equation
for polymer number density �Eq. �16��. In this equation, the
balance between the Fickian diffusion of polymer concentra-
tion and stress-induced migration governs the evolution of a
disturbance in concentration field. While the Fickian diffu-
sion gives stable eigenvalues, instability is caused by the
stress-induced migration effect. The stable eigenvalues for
molecular diffusion are modified by the migration term to
result in unstable eigenvalue, we refer to as the concentration
mode. Identifying the origin of other modes in the eigenspec-
trum is not a straightforward continuation of other existing
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modes for the homogeneous case. However, based on the
analogy with the diffusion mode discussed in Sec. IV B for
the diffusive Oldroyd-B model, we can term the four pairs of
modes after the concentration modes, as the diffusion modes.
These modes are similar to the diffusion mode discussed in

Sec. III, although modified by the presence of concentration
fluctuations. The Newtonian wall mode modified by the flow
elasticity is found to be decaying faster than the other kinds
of modes. The eigenfunctions for all kinds of modes are
confined to a thin region near the walls. The typical structure
of eigenfunctions corresponding to the concentration mode is
shown in Fig. 15 for both the types of boundary conditions.
The eigenfunctions are obtained by using the normalization

condition C̃xy �y=0=1. Only the real parts of the disturbances

ñ, C̃xy, and C̃xx are shown. The structure of the eigenfunc-
tions is apparently similar for both kinds of boundary condi-
tions.

The instability due to the concentration fluctuations was
found earlier by Black and Graham31 for the creeping flow of
UCM fluid ��=0�. For their case, the concentration mode
was found to be stable for a set of parameters studied. How-
ever, the mode becomes unstable upon incorporating slip at
the walls. We continue the unstable concentration mode dis-
cussed above for the dilute solutions to the UCM fluid by
reducing the solvent viscosity parameter � to zero. Figure 16
shows the variation of ci with � using the no-flux condition
for polymer conformation, a condition used by Ref. 31. The
unstable mode stabilizes when � is reduced to zero, which is
consistent with the observation of Black and Graham.31 It
should be noted here that the fluid Reynolds number does not
affect the concentration mode appreciably. Although the con-
centration equation �16� is coupled with the fluid momentum
balance equation �12�, the coupling, however, is found to be
weak.

The weakly nonlinear analysis is performed to examine
the nature of bifurcation to finite amplitude states at the point
of linear instability. Figure 17 shows the variation in distur-
bance amplitude in the vicinity of transition Weissenberg
number. For the boundary condition in which the conforma-
tion equation with Pe→� being applied at the walls, the
nonlinear effects are further destabilizing, resulting in a sub-
critical instability at Weissenberg number lower than Wt

�see Fig. 17�a��. On the contrary, the nonlinear contribution
is stabilizing for the no-flux condition for polymer conforma-
tion at the walls, leading to supercritical stability for
W�Wc �see Fig. 17�b��.

Before closing the analysis in this chapter, we briefly
analyze a variant of nonhomogeneous polymer model used
above. Following the derivation by Mavrantzas and Beris25

using the Hamiltonian for two fluid phases, the polymer con-
formation equation explicitly includes the two-fluid effects.
In this approach, the polymer conformation is given by

�C

�t
+ � · �vpC� − C · �vp − ��vp�T · C

= −
�C − nI�

W
+

1

Pe
�2C . �36�

Here the upper convected derivative is based on the polymer
phase velocity vp=v+ �1−���v, where � is the polymer
mass fraction and �v is the differential velocity. For dilute
solutions ��1 and the differential velocity is proportional to
the mass flux, �v=J /n. Here the total flux of polymer mol-
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ing zero conformation flux across walls as the boundary condition. The
parameters are Re=2000 and �=1. �a� Variation in ci with Weissenberg
number for �=0.95; �b� the transition Weissenberg number as a function of
disturbance wavenumber for different �.
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ecules J is given by Eq. �19�. Thus, the expression of the
polymer phase velocity is

vp = v +
J

n
, �37�

where v is the fluid velocity field. This two-phase model was
used to study the migration and the instability in Taylor–
Couette flow.27 Recently, the direct numerical simulation of

turbulent boundary layer flow was carried out for the nonho-
mogeneous polymeric flow described by the above discussed
two-fluid model.53 For the base state of our interest, the poly-
mer flux J is zero and vp=v. However, the strongly varying

TABLE I. The list of first few least stable eigenvalues for the two kinds of boundary conditions for the
conformation tensor. The parameters are: Re=2000, �=1, �=0.95, and Pe=104.

Classical Oldroyd-B equation
at walls W=20

No-flux boundary condition
W=25

Eigenvalue c Mode type Eigenvalue c

0.010 670 377+0.002 331 849
Concentration modes

0.041 615 254+0.001 117 870

0.989 335 130+0.002 329 887 0.958 382 817+0.001 116 054

0.082 587 029−0.028 864 934

Diffusion modes

0.135 027 773−0.049 738 761

0.917 413 569−0.028 869 094 0.864 969 057−0.049 738 511

−0.038 641 202−0.045 360 697 −0.005 504 068−0.056 119 828

1.038 638 070−0.045 353 810 1.005 505 420−0.056 117 066

0.059 217 404−0.066 472 986 0.086 908 934−0.061 028 747

0.940 809 903−0.066 469 833 0.913 081 312−0.061 029 092

0.168 990 859−0.072 437 195 0.198 570 158−0.090 949 441

0.831 008 778−0.072 433 318 0.801 430 487−0.090 942 489

0.311 007 525−0.092 397 516
Wall mode 1

0.311 142 431−0.093 444 197

0.689 008 742−0.092 405 826 0.688 886 636−0.093 402 577

0.009 777 403−0.092 938 728

Diffusion modes

0.043 075 445−0.110 107 065

0.990 215 279−0.092 934 440 0.956 926 845−0.110 109 909

0.093 187 589−0.103 190 160 0.099 265 468−0.113 790 868

0.906 789 166−0.103 190 784 0.900 724 373−0.113 804 804

0.227 470 563−0.109 251 509
Concentration modes

0.253 584 826−0.124 958 837

0.772 524 904−0.109 253 305 0.746 449 179−0.124 988 079

¯ ¯

¯ ¯

0.499 902 225−0.193 338 078 Wall mode 2 0.499 984 729−0.193 417 592
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FIG. 15. The structure of eigenfunctions and its sensitivity to the type of
boundary condition for the unstable concentration mode. The parameters are
Re=2000, �=1, �=0.95, W=25, and Pe=104. Typical disturbances ñ�y�,
C̃xy�y�, and C̃xx�y� are plotted. Here, “FBC” means the no-flux boundary
condition for conformation tensor and “OBC” indicates the use of classical
Oldroyd-B equation at the walls.
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flux disturbance may influence the polymer dumbbell veloc-
ity and consequently the stability behavior. We, therefore,
examine the stability of nonhomogeneous polymeric flow us-
ing Eq. �36� for conformation tensor. Figure 18 shows the
effect of Weissenberg number on ci applying Eq. �36� with
Pe→� at the walls. Like for the earlier case, the instability is
observed. We find the transition Weissenberg number Wt to
be marginally smaller than its value for the case vp=v shown
in the respective Fig. 12.

V. CONCLUSIONS

The nature of interaction of macromolecules, capable of
extracting energy from the surrounding and storing it in the
form of elastic energy, with the hydrodynamics, which drives
the polymeric chains away from equilibrium, has been stud-
ied for many years. In the present work, with the focus on the
on-set of transition, we carried out the stability analysis of
dilute polymeric flow. Both the linear and the finite ampli-
tude stability were analyzed for 2D disturbances in a plane
Couette flow. In the widely studied problem of plane Poi-
seuille flow, the axial wavenumber of interest is O�1�.17

However, following the earlier finding that the most danger-
ous finite amplitude disturbance for the Newtonian wall
mode has wavelength comparable to the thickness of wall

layer,4 our analysis is focused on disturbances with wave-
number ��Re1/2, for which the thickness of wall layer is
O�Re−1/2�. For these disturbances the finite amplitude stabil-
ity of polymeric wall mode is examined first using the clas-
sical Oldroyd-B model for the viscoelastic fluid. We find that
the threshold kinetic energy necessary for subcritical transi-
tion in polymeric flow is higher than that for the Newtonian
flow and the energy is proportional to Re−3/2 for Re�1, a
scaling similar to the Newtonian fluids.

The presence of the continuous spectra in the classical
Oldroyd-B model prevents the continuation of the wall mode
eigenvalue to large Weissenberg number. One of the spectra,
which is a branch cut in eigenvalue space, does not allow a
continuous evolution of the discrete eigenvalues. Following
a common practice, an artificial diffusivity is added to the
Oldroyd-B model. As known already, this modification de-
stroys the spectra and allows continuous evolution of eigen-
values. However, the diffusive equation for the polymer con-
formation gives rise to other discrete modes, referred to as
the diffusion modes. While the diffusion modes are subdomi-
nant to the wall modes �i.e., decay faster than the wall
modes� for wavenumber O�1�, few of them becomes the
least stable modes for large wavenumbers. The diffusion
modes scale with Péclet number as ci�Pe−1/2. From the
weakly nonlinear analysis we observe that the threshold ki-
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FIG. 17. Disturbance amplitude as a function of Weissenberg number, the
transition parameter, in the vicinity of the transition point. �a� Re=2000,
�=3.8, �=0.95, and Pe=103. BC: Conformation equation with Pe→�; �b�
Re=2000, �=5.0, �=0.95, and Pe=103. BC: No-flux across walls for the
conformation tensor.
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netic energy is small compared to that for the Newtonian
fluids.

Another variant of the Oldroyd-B model, which accounts
for nonhomogeneous polymer number density, has also been
analyzed for stability of the base profiles. The concentration
fluctuations due to the coupled distribution of polymer mass
and stress are found to destabilize the concentration mode
which becomes unstable when the fluid Weissenberg number
exceeds a transition value Wt. The instability was observed
for two kinds of boundary conditions tested in the present
study, i.e., applying the Oldroyd-B equation for polymer con-
formation with Pe→� at the wall, and applying no-flux of
conformation across the walls. This instability tends to trans-
form the uniform concentration profile in the base flow into a
nonuniform distribution near the walls, leading to demixing.

A comment on physical realizability of the instability
seems worth making at this point. Usually the artificial dif-
fusivity term is added only to regularize the singular eigen-
functions and it should be small enough not to influence the
flow. However, Péclet numbers of the order of 104–105 or
even smaller are employed in numerical simulations to cap-
ture the polymer-induced drag reduction. Therefore, the
present analysis covers the range Pe=103–105. As men-
tioned in Sec. IV C, the linear instability driven by the con-
centration mode does not exist for Pe�106. Hence, it re-
mains to be seen if this instability can be observed in
practice.
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