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Structure and dynamics of two-dimensional sheared granular flows
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The structure and dynamics of the two-dimensional linear shear flow of inelastic disks at high area fractions
are analyzed. The event-driven simulation technique is used in the hard-particle limit, where the particles
interact through instantaneous collisions. The structure (relative arrangement of particles) is analyzed using the
bond-orientational order parameter. It is found that the shear flow reduces the order in the system, and the order
parameter in a shear flow is lower than that in a collection of elastic hard disks at equilibrium. The distribution
of relative velocities between colliding particles is analyzed. The relative velocity distribution undergoes a
transition from a Gaussian distribution for nearly elastic particles, to an exponential distribution at low coef-
ficients of restitution. However, the single-particle distribution function is close to a Gaussian in the dense
limit, indicating that correlations between colliding particles have a strong influence on the relative velocity
distribution. This results in a much lower dissipation rate than that predicted using the molecular chaos

assumption, where the velocities of colliding particles are considered to be uncorrelated.
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I. INTRODUCTION

A dense granular material, which is a collection of dis-
crete, solid particles dispersed in an interstitial fluid, is ubiq-
uitous in nature, and in various industrial processes. A good
understanding of the physics of granular materials is desired
in order to design efficient processing and handling systems.
The regime of dense flowing granular materials is an area of
active research where a lot of progress has been made, but
much further work remains to be done. Modeling of dense
flows of two-dimensional disks in the hard-particle limit,
where the interactions between particles can be modeled as
instantaneous collisions, is the subject of the present study.

Flows of hard particles have been traditionally modeled
using kinetic theory approaches, which draw an analogy be-
tween the motion of discrete particles in the granular mate-
rial and the motion of molecules in a molecular gas. Kinetic
theory calculations range from the more approximate ap-
proaches, where the Navier-Stokes equations are modified by
adding a dissipation term due to inelastic collisions in the
energy equation [1-4], to more sophisticated asymptotic ap-
proaches that used expansions in the inelasticity and the
Knudsen number [5-8]. The important difference between a
molecular gas and the granular flow of inelastic particles is
that energy is not a conserved variable in a granular flow,
since energy is dissipated in interparticle collisions. It has
commonly been assumed that constitutive relations obtained
using kinetic theory are limited in their applicability, mainly
for two reasons. The first is that the binary collision approxi-
mation is inapplicable for dense flows of practical interest
where multibody contacts are likely to dominate. However,
there is recent evidence [9-11] to indicate that the binary
contact approximation is, in fact, valid even for relatively
dense flows. This is because extent of overlap between par-
ticles is determined by the volume fraction, and by the stiff-
ness of contacts between particles. For perfect hard spheres
where the stiffness tends to infinity, all contacts between par-
ticles are binary contacts even at high volume fraction, pro-
vided the material is flowing. As the stiffness decreases, the
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number of simultaneous contacts will increase. For materials
of practical interest such as sand and glass, it is found that
the stiffness of the contacts is sufficiently high that the par-
ticles are in the binary contact regime even when the volume
fraction is as high as 0.56-0.58. The initial simulation stud-
ies [12] found multibody contacts because the stiffness of the
contacts were assumed to be about 4 orders of magnitude
lower than those for real particles in order to reduce compu-
tation time.

Even if the particle interactions are via binary contacts,
kinetic theory calculations for dilute granular flows make the
additional molecular chaos assumption, that the two-particle
velocity distribution is the product of the single-particle dis-
tributions. In the case of dense granular flows, it is usual to
use the Enskog approximation, that the two-particle distribu-
tion function is the product of the single-particle distribu-
tions and the equilibrium pair distribution function at con-
tact. In the case of dense sheared elastic fluids, it is known
that constitutive relations derived from kinetic theory are sig-
nificantly in error, due to the effect of correlations [13]. Cor-
relation effects are calculated using the ring-kinetic equation,
where the three-particle distribution function is written as the
product of two-particle distributions, and closure is effected
at the two-particle level in the Bogoliubov-Born-Green-
Kirkwood-Yvon (BBGKY) hierarchy. These correlations re-
sult in a viscosity that diverges as the logarithm of the strain
rate in two dimensions, and the reason for this divergence is
the slow decay (long-time tails) in the velocity autocorrela-
tion function. In the case of sheared inelastic fluids, recent
theoretical calculations [14,15] and experiments [ 16] indicate
that long-time tails in the autocorrelation functions are not
present. This is because the nature of the hydrodynamic
modes in a sheared inelastic fluid, where energy is not a
conserved variable, is very different from that in an elastic
fluid. Therefore, kinetic theory calculations are valid for a
larger range of volume fractions for sheared inelastic fluids,
provided the coefficient of restitution is close to 1.

In the case of dense inelastic fluids, there are differences
between the simulation results and the predictions of kinetic
theory, especially for the rate of dissipation of energy in the
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flow [9]. In addition, for the particular application of the flow
down an inclined plane, the earlier constitutive relations [2]
have consistently predicted that no stable flow is possible
because the volume fraction increases as the angle of incli-
nation increases, whereas stable flows have been observed in
simulations. More sophisticated calculations which incorpo-
rate the Burnett contribution to the stress tensor have yielded
realistic predictions for the variation in the volume fraction
with the angle of inclination. However, there are significant
numerical differences between the theoretical predictions and
simulation results. This has led to suggestions [17-20] that
long-range correlations are important, and kinetic theory
cannot be applied for these flows. The presence of long-
range correlations can be tested directly. Because simulations
provide access to all the microscopic variables in the flow, it
should be possible to calculate the correlation lengths di-
rectly in simulations. So far, soft-particle simulations have
not yielded long-range correlations in the flow down an in-
clined plane. In the case of a sheared granular flow, contact
dynamics simulations do report long-range contacts, but
these have not been seen in event-driven simulations. The
difference could be attributed to the difference in the simu-
lation techniques, which are both hard-particle simulation
techniques. The event-driven simulation technique proceeds
from one discrete collision event to the next. In the contact
dynamics simulations, interactions are considered to be due
to hard-particle collisions, but the simulation proceeds in dis-
crete time steps. All collisions that occur within one discrete
time step are considered to be simultaneous contacts. Since
the collision frequency diverges as the random-close-packing
limit is approached, if the simulation time step is kept a
constant, a larger fraction of collisions are considered to be
simultaneous contacts. This explains the difference in the
interpretation of simultaneous contacts in event-driven simu-
lations and contact dynamics simulations.

A different approach for studying the structure and veloc-
ity correlations in three-dimensional dense shear flows was
used [21,22], where event-driven simulations were used to
extract the relative arrangement of particles as well as the
distribution of relative velocities at contact. This analysis
revealed several interesting and unusual features. The struc-
ture (relative arrangement of particles) in the flowing mate-
rial is very different from that in a collection of elastic
spheres at equilibrium. In the case of hard spheres at equi-
librium, there is a crystallization from a random to an or-
dered phase at a volume fraction of 0.49. In contrast, in a
sheared inelastic fluid, it was found that the system continues
to be in a random state even at volume fractions as large as
0.5-0.6, provided the size of the simulation cell is large
enough. Ordering does occur when the cell is small (less than
about 5 particle diameters in width). The particle motion in
the random state was found to be diffusive, in contrast to the
particle motion by discrete cage-breaking events in the or-
dered state. The collision frequency for a sheared granular
flow was found to be larger than that for particles at equilib-
rium, and it was found to diverge at a lower volume fraction
than the random-close-packing volume fraction of 0.64 for a
fluid of elastic spheres. The single-particle velocity distribu-
tions were found to be close to Gaussian distributions even at
high volume fractions and low coefficients of restitution.
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However, the relative velocity of colliding particles along the
line joining centers was very different from a Gaussian dis-
tribution, and it was well approximated by an exponential
distribution at the lowest coefficient of restitution of 0.6.
Mitarai and Nakanishi [23] also studied the effect of precol-
lisional relative velocity in a dense granular flow, and noted
a significant change in the form of the distribution, but did
not proceed to model the exact form of the distribution. This
change in the form of the distribution is due to the correla-
tions in the velocities of particles, since the single-particle
velocity distributions are Gaussian distributions. The corre-
lation effects are not as strong in the direction perpendicular
to the line joining centers, and the relative velocity distribu-
tion in this direction are found to be well fitted by Gaussian
distributions. Empirical forms for the relative velocity distri-
bution along the line joining centers were proposed. When
these were used in the expressions for the collisional stress
and dissipation rates, quantitative agreement with simula-
tions was found. This indicates that the flow of dense granu-
lar materials can be quantitatively described by hard-particle
models, which consider particle interactions to be instanta-
neous binary collisions, provided the effect of shear on the
divergence of the collision frequency and the effect of cor-
relations is incorporated in the relative velocity distribution.

Here, we study the shear flow of two-dimensional inelas-
tic disks, with the objective of determining whether the un-
usual features observed in the flow of three-dimensional
spheres are observed in two dimensions as well. The event-
driven simulation technique is used, where the interactions
between particles are considered to be instantaneous colli-
sions. In three dimensions [21], the event-driven simulation
technique suffers from the accumulation of numerical errors
at very high volume or area fractions in both two and three
dimensions, resulting in particle overlaps. In two dimen-
sions, we also find the occurrence of shear banding for
smooth particles when the coefficient of restitution is greater
than about 0.9. Due to these errors, it is not possible to ex-
tend the simulation technique close to the random-close-
packing limit, and we have been able to carry out simulations
up to maximum area fractions of 0.81 for rough particles and
0.75 for smooth particles, depending on the coefficient of
restitution.

II. COLLISION MODEL AND SIMULATION TECHNIQUE

The system consists of rough inelastic disks of diameter d
subjected to uniform shear flow in the x-y plane. In the co-
ordinate system used here, the flow is in the x direction, and
the velocity gradient in the y direction. The particle mass m
is set equal to 1 without loss of generality, so that all mass
dimensions are nondimensionalized by the particle mass. The
fluctuating velocity of the particles is defined as c=u-U,
while the fluctuating angular velocity is defined as w=w
-, where u and o are the particle velocity and angular
velocity, and U and O are the mean velocity and angular
velocity at the particle position. For a uniform shear flow, U
is a linear function of the y coordinate, while () is indepen-
dent of position. The collision rules used for calculating the
change in the particle velocity and angular velocity are as
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follows. Consider a collision between two particles with ve-
locities u and u*, and angular velocities w and w*, in which
the unit vector in the direction of the line joining the centers
of the particles from the particle at x to the particle at x* is k.
In a collision that conserves linear and angular momenta, the
sum of the velocities (u+u”) and the difference in the angu-
lar velocities (w—w™) are conserved in the collision.

The velocity difference between the two surfaces at con-
tact, g, can be written in indicial notation as g;=(u;—u;)
—(€&1/2)kj(w+w]), where € is the antisymmetric tensor,
and k is the unit vector in the direction of the line joining the
centers of the particles. The collision model used here is a
rough-particle-collision model, in which the postcollisional
relative velocities parallel and perpendicular to the line join-
ing the centers of the particles are related by

gilki=_engiki’ (1)

€ik;g, = — e,€1k;g (2)

where the normal coefficient of restitution e, varies between
0 (perfectly inelastic collisions) and 1 (elastic collisions), and
the tangential coefficient of restitution e, varies between —1
(smooth particles) and +1 (perfectly rough particles). Energy
is conserved in a collision for e¢,=1 and e,= = 1. From Eqgs.
(1) and (2), the particle velocity and angular velocity after
collision are related to the velocity and angular velocity be-
fore collision by

) —u;=—[(1+¢,)12)(u; — u))k;k; = [(1 + e)/2][41/(1 + 41)]
X[(8; = kikej) (u; = 1) = (€ 2)k {w, + @))], (3)

o] —w;=—[(1+e,)2][41/(1 +4D)](1/2])
X[fijlkj(ul - M;) + (1/2)(51‘]‘ - k,‘k,‘)(@,‘ + wj)],
4)

where [ is the moment of inertia scaled by the product of the
mass and the square of the diameter of the particle.

The simulation procedure used here is an event-driven
simulation procedure, where the trajectories of the particles
are advanced forward in time, and the particles which collide
in the shortest time are identified. All particles are advanced
by this time period, and the collisional change in the veloci-
ties is implemented, before the next collision is predicted.
We generate homogeneously sheared inelastic-hard-disk con-
figurations using the Lees-Edwards boundary conditions
[24], an event-driven nonequilibrium molecular-dynamics al-
gorithm. The top and bottom boxes move with velocities +U
and —U, respectively, with respect to the central box. When a
particle crosses the top (bottom) boundary of the central box
with a horizontal velocity v,, its image enters through the
bottom (top) with a horizontal velocity (v,)inag=0x+ U.
This induces shear at the top (bottom) boundaries of the
central box, which then propagates by collisions into the cen-
tral box. All the simulations are carried out in square simu-
lation cells with 1024 particles, and the area of the cell is
adjusted to obtain the desired area fraction.

At high area fractions, the event-driven algorithm suffers
from the disadvantage of inelastic collapse, where an infinite
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TABLE 1. Maximum area fraction ¢,,,, at which there were no
particle overlaps and no deviation from homogeneous shear at the
end of a simulation run of 2104 collisions per particle for a 1024-
particle system for both rough particles (e,=1) and smooth particles
(e,=-1).

€ Dmaxle,==1.0) Daxle,=1.0)
0.98 0.74 0.75
0.95 0.76 0.77
0.90 0.79 0.81
0.80 0.81 0.81
0.70 0.77 0.80
0.60 0.73 0.79

number of collisions take place between particles in a finite
time. Inelastic collapse can be avoided by using a more re-
alistic velocity-dependent coefficient of restitution which
goes to 1 when the relative velocity goes to 0 [25] or by
switching off inelasticity if the time between collisions is
smaller than a minimum value [26]. The range of inelastici-
ties for inelastic collapse in sheared granular flows is typi-
cally less than that for the homogeneous cooling state. Alam
and Hrenya [27] carried out calculations for shear flow of
smooth particles in two dimensions, and they reported that
inelastic collapse happens at about ¢,=0.4 for area fraction
of about 0.5. When there is inelastic collapse, there are nu-
merical errors due to the finite computational resolution of
particle positions in the collision time prediction, which re-
sult in particle overlaps. In our simulations, we have taken
care to ensure that there are no particle overlaps, and we
have discarded simulation results where overlaps occur. Due
to this, there is an upper limit on the area fractions, ¢,,,..
listed in Table I, at which we have been able to obtain re-
sults. In contrast to the numerical limitations imposed by
inelastic collapse, our simulation parameter range is also re-
stricted by the physical limitation of shear localization, as
shown in Figs. 1 and 2. As the area fraction is increased, the
initially homogeneous sheared state evolves into a banded
state, where the shear is localized in only one part of the
domain. Flows with shear localization are also not consid-
ered in the present analysis. Shear localization provides a
second physical upper bound on the area fractions accessible
in the event-driven simulations. At coefficients of restitution
greater than about 0.9, we find that the system transitions
from a homogeneous shear flow to a shear localization re-
gime before inelastic collapse. The area fraction for the tran-
sition from the homogeneous shear flow to a shear banded
flow increases as the coefficient of restitution decreases. At
coefficients of restitution below 0.9, there are numerical er-
rors due to particle overlap first, and we do not observe shear
localization for these coefficients of restitution. The maxi-
mum area fraction ¢,,,, which can be simulated without par-
ticle overlaps decreases as the coefficient of restitution de-
creases.

III. STRUCTURE AND DYNAMICS

In two dimensions, the hexagonal order parameter for par-
ticles in contact is defined by
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FIG. 1. Mean velocity, scaled by the product of the strain rate y
and box length L, as a function of y/L for the shear flow of smooth
particles using Lees-Edwards boundary conditions, and for different
area fractions and coefficients of restitution: ¢=0.70 and ¢,=0.98
(O), ¢=0.76 and ¢,=0.98 (A), and ¢$=0.79 and ¢,=0.95 (V).

qm=exp(imb,)), (5)

where () is the average over all the bonds, and 6, is the
angle formed by a bond with respect to some arbitrary axis.
The order parameter g4 is 1 for a hexagonally ordered sys-
tem, and is O for a completely random system. Since there
are forces between particles only during collisions in the
present system, we define the order parameter g,, as the sum
over all binary collisions,

FIG. 2. Mean velocity, scaled by the product of the strain rate y
and box length L, as a function of y/L for the shear flow of rough
particles using Lees-Edwards boundary conditions, and for different
area fractions and coefficients of restitution: ¢=0.75 and ¢, =0.98
(O), ¢=0.78 and ¢,=0.98 (A), and ¢$=0.80 and ¢,=0.95 (V).
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FIG. 3. Order parameter g¢ as a function of area fraction for
smooth particles for different values of the normal coefficient of
restitution: ¢,=1.0 (+), ¢,=0.98 (O), ¢,=0.95 (A), ¢,=0.9 (V),
€,=0.8 (<), ¢,=0.7 (>>), and ¢,=0.6 ().

gn=/N) > exp(imé), (6)

collisions

where N, is the number of collisions, and the above average
is carried out over all collisions. The g4 values are shown as
a function of packing fraction for a system size of 1024
particles at different coefficients of restitution in Fig. 3 for
smooth particles and Fig. 4 for rough particles. For elastic
disks, there is a crystallization transition at an area fraction
of about 0.69 to a hexagonally ordered phase, signaled by a
sharp increase in g¢ at this area fraction.

In a sheared system, we observe that the area fraction for
the crystallization transition increases substantially. Even for
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FIG. 4. Order parameter g¢ as a function of area fraction for
rough particles with ¢,=1.0 and for different values of the normal
coefficient of restitution: ¢,=1.0 (+), ¢,=0.98 (O), ¢,=0.95 (A),
¢,=0.9 (V), ¢,=0.8 (), ¢,=0.7 (>>), and ¢,=0.6 ().
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nearly elastic particles with e,,=0.98, the onset of ordering is
at an area fraction of 0.73 for smooth particles, and at about
0.76 for rough particles. For lower coefficients of restitution
of up to about 0.8, the increase in the order parameter takes
place at an area fraction of between 0.78 and 0.8. When the
coefficient of restitution is less than 0.7, we are unable to
observe crystallization, because of the onset of numerical
errors due to particle overlaps. It should be noted that the
random-close-packing area fraction is 0.82 in two dimen-
sions. Thus, our analysis indicates that shear increases the
area fraction for the crystallization transition in two dimen-
sions; this is similar to previously obtained results for three
dimensions [21]. However, in three dimensions, it was found
that there is virtually no ordering right up to the volume
fractions at which the collision frequency diverged for coef-
ficients of restitution less than about 0.8. This is not the case
in two dimensions; we see signatures of ordering even at the
lowest coefficient of restitution, e,=0.6, considered here.
This is consistent with previous results; it is well known that
hexagonal ordering happens very efficiently in two dimen-
sions, and the hexagonally ordered phase is topologically
stable [28]. Specialized algorithms which impose rapid den-
sification (analogous to quenching for thermal systems), such
as the Woodcock (Monte Carlo) algorithm [29] and the
Lubachevsky-Stillinger  (molecular-dynamics)  algorithm
[30], are required to maintain the system in the random state.
In three dimensions, though there is ordering, the face-
centered-cubic phase is topologically unstable, and so it is
easier to maintain the system in the random state [31].
The granular temperature is defined for rough disks as

3T =((uy = U)) + (u) + K(w - Q)?), (7)

where U and () are the mean linear and angular velocities,
respectively. Note that the mass of the disks has been set
equal to 1, without loss of generality, and 7 is the moment of
inertia. For smooth disks, there is no rotational degree of
freedom, and so the granular temperature is defined as

27 = ((u, - U)*) + (u3). (8)

Since energy is not equally partitioned in a driven dissipative
system, we also define the mean square of the velocities in
the different directions as

T.={(u,~ U)),
T, = (uy),

T,=K(w-Q)%. )

Instead of plotting the translational temperature itself, we
show the ratio T(1-e?)/7’d> in Fig. 5, because we expect
the temperature to be proportional to 1/(1—ei) at constant
strain rate from energy balance conditions. Scaled in this
manner, the temperature shows very little variation with the
coefficient of restitution. Surprisingly, the temperature shows
a slight increase as the area fraction is increased. We will see
a little later that this is due to the reduction in the rate of
dissipation of energy due to a change in the form of the
relative velocity distribution at contact. However, it is impor-
tant to note that the temperature neither decreases to zero nor
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FIG. 5. The ratio T(1 —ei)/ d*? as a function of area fraction for
smooth particles (open symbols) and rough particles (filled sym-
bols) and for ¢,=0.98 (O), ¢,=0.95 (A), ¢,=0.9 (V), ¢,=0.8 (),
¢,=0.7 (I>), and ¢,=0.6 (O).

diverges as the limit of close packing is approached for e,
=0.9. This indicates that the efficiency of the collisional
processes for shear production of energy and for inelastic
dissipation of energy increases in proportion as the close-
packing limit is approached, resulting in a finite temperature
in this limit. It is also found that the temperature for rough
inelastic particles is larger than that for smooth inelastic par-
ticles. The anisotropy in the temperature distribution, shown
in Fig. 6, increases as the coefficient of restitution decreases,
but it decreases as the area fraction decreases. The tempera-
ture in the flow direction is always found to be larger than
that in the gradient direction and the temperature of the an-
gular velocity fluctuations. For area fractions greater than
about 0.7, the ratio of the temperatures in the different direc-
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FIG. 6. The ratios 7,/T (O) and T,/T (A) for smooth particles
with e,=—1, and the ratios 7,/T (V), T,/T (<), and T,/ T (I>) as
functions of area fraction for coefficients of restitution e,=0.98
(open symbols) and ¢,=0.6 (filled symbols).
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FIG. 7. The collision frequency v scaled by the strain rate y as
a function of area fraction for smooth particles (open symbols) and
rough particles (filled symbols) for different values of the normal
coefficient of restitution: ¢,=0.98 (O), ¢,=0.95 (A), ¢,=0.9 (V),
¢,=0.8 (<), ¢,=0.7 (I>), and ¢,=0.6 ().

tions and the average temperature varies in a relatively small
range between 0.9 and 1.1, indicating that equipartition is a
good approximation for dense flows.

Next, we turn to the frequency of collisions for a dense
flow v, which is the number of collisions per particle per unit
time. The collision frequency per unit area per unit time is
pv/2, where p is the number of particles, and the factor (1/2)
accounts for the double counting of collisions between two
particles. The collision frequency scaled by the strain rate is
shown in Fig. 7. It is clear that there is an increase of about
2 orders of magnitude when the area fraction increases from
0.3 to about 0.77, and this increase is much larger than that
in the granular temperature. Since we have been able to carry
out simulations for a higher area fraction for rough particles,
we observe a higher collision frequency for rough particles.
Another important feature observed in Fig. 7 is that the col-
lision frequency appears to diverge at a lower area fraction as
the coefficient of restitution decreases.

The kinetic theory framework can be used to place the
collision frequency data in context. In the dilute limit, the
collision frequency can be calculated using the kinetic theory
of gases, and it is given by

V=(l+e;1)p\"ﬁ, (10)

where p is the number density (number per unit area, and T
is the translational temperature [32]). However, as the area
fraction increases, the collision frequency is greater than that
predicted by kinetic theory, due to the excluded area and
shadow effects. The collision frequency is then expressed as

v=(1+¢")px(PVT, (11)

where x(¢) is the pair distribution function, and Eq. (11)
effectively defines the pair distribution function. For dense
equilibrium hard disks, a widely used correlation for the pair
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FIG. 8. The scaled collision frequency v*=wv/ ¢\ T as a function
of area fraction for smooth particles (open symbols) and rough par-
ticles (filled symbols) for different values of the normal coefficient
of restitution: ¢,=0.98 (O), ¢,=0.95 (A), ¢,=0.9 (V), ¢,=0.8 (),
€,=0.7 (I>), and ¢,=0.6 ().

distribution function for random configurations due to
Torquato [33] is of the form,

1 - 0.436¢, ¢, — by
(1-¢)* ¢b.— ¢

for ¢p> ¢f, where gbf:O.69 is the area fraction at the freezing
transition, and ¢.=0.82 is the random-close-packing area
fraction. Using this expression for the pair distribution the
collision frequency is

x(¢) = (12)

4.268

"To082-¢ (13)

It should be noted that the Torquato expression for the colli-
sion frequency is valid only for the random state, and not for
the ordered state. Luding [34] derived a pair distribution
function for a granular material in the absence of shearing
which incorporated the effect of inelasticity,

Xf(®) = xo()
1 +exp[—90.1(¢— ¢p)]’

where xo,=(1-7¢)/(1-¢)? is the Carnahan-Starling expres-
sion for the pair distribution function, and Xy
=[(1+e,)(Np./ p—1)]"", with ¢.=0.82 and ¢h,=0.7006.

In order to make a comparison with the results for hard
disks, a scaled collision frequency is defined as

X(®) = xo() + (14)

v = v/d)\«"?. (15)

This scaled collision frequency is shown as a function of the
area fraction in Fig. 8. In order to obtain an empirical form
for the scaled collision frequency, we plot, in Fig. 9, the
inverse of the scaled collision frequency (1/v*) as a function
of area fraction for both rough and smooth particles.
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FIG. 9. The inverse of the scaled collision frequency (1/v) as a function of area fraction for (a) rough particles and (b) smooth particles
for different values of the normal coefficient of restitution: ¢,=1.0 (+), ¢,=0.98 (O), ¢,=0.95 (A), €,=0.9 (V), ¢,=0.8 (), €,=0.7 (I>),
and ¢,=0.6 (< ). The solid line is the inverse of the collision frequency from the pair distribution function of Torquato equation (12), and the
top and bottom dashed lines are the inverses of the collision frequency from the pair distribution functions of Luding equation (14) for

¢,=0.98 and ¢,=0.6, respectively.

Also shown in Fig. 9 is the inverse of the collision fre-
quency for elastic particles. It should be noted that expres-
sion (13) is valid only for the random state. First, we note
from Figs. 8 and 9 that the collision frequency for a sheared
inelastic fluid is much higher than that for an elastic fluid at
the same area fraction, and the collision frequency increases
as the system becomes more inelastic (coefficient of restitu-
tion decreases). For an elastic fluid, the coefficient of resti-
tution diverges at an area fraction of 0.91, which corresponds
to the maximum hexagonal-close-packing area fraction for
an ordered system. Also shown in Fig. 9 is expression (13)
for the random configuration. As noted earlier, the random
configurations have to be generated by specialized nonequi-
librium algorithms where the particle diameter is increased
in time. We have not attempted to carry out these simulations
here, and instead we use the expression reported in previous
studies [33,34]. The collision frequency for the random con-
figurations diverges at the random-close-packing area frac-
tion of 0.82 for both the pair distribution functions of
Torquato equation (12) and the pair distribution function of
Luding equation (14). For a sheared fluid with nearly elastic
particles (e,=0.98), we find that at area fractions less than
about 0.75, the collision frequency is larger than that for that
for the random state for an elastic fluid, and it follows the
same trend as that given by Egs. (13) and (14). However, as
the area fraction increases beyond about 0.75, there is crys-
tallization and the collision frequency approaches that for a
crystallized elastic fluid. The divergence of the collision fre-
quency takes place at an area fraction close to 0.91 for hex-
agonal close packing. When the coefficient of restitution is
0.8 or less, we do not see a clear transition to an ordered
structure, and the collision frequency remains higher than
that for the random state of a fluid of elastic particles. The
pair distribution function of Luding [34] [Eq. (14)], which
was derived for an unsheared granular material, captures the
trend of increasing collision frequency with decreasing coef-

ficient of restitution. However, this pair distribution function
also diverges at the random-close-packing area fraction of
0.82, whereas the collision frequency in simulations appears
to diverge at a lower area fraction for the sheared state. A
similar phenomenon was also observed for a three-
dimensional sheared granular material [21,22], where the
volume fraction for the divergence of the frequency was
termed the volume fraction ¢,, for arrested dynamics.

Analogously as with Eq. (13), we have attempted to ob-
tain an empirical fit for the collision frequency,

A
.

vy (1)
where A, ¢,4, and a are functions of the coefficient of resti-
tution. Here, ¢,, is the area fraction for arrested dynamics
[21,22], since the collision frequency (and the stresses) di-
verges at fixed strain rate, or the strain rate goes to zero at
fixed collision frequency. These coefficients were obtained
using a least-squares fitting procedure using all the frequency
data for ¢=0.5. For every two adjacent data points
(¢;,(¥))™") and (¢, (v}, )7") in Fig. 9, we evaluate the er-
ror function

error = {logl (+7;,)"'] ~ logl (+}) ™1~ allog( oy — 1)
~ log(da— $)1. (17)

The average of the error function over all pairs of data points
in Fig. 9 is then calculated as

N-1

average error = LE {log[ (v, )71 = log[ (v})™']
N-135
- a[log(¢ad - ¢i+1) - log(d)ad - ¢i)]}27

(18)

where N is the total number of data points in Fig. 9 in the
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TABLE II. The coefficients ¢,4, a, and A in Eq. (16), and av-
erage error (18) for rough particles with e,=1.0.

PHYSICAL REVIEW E 79, 061303 (2009)

TABLE III. The coefficients ¢,; and A in Eq. (16), and the
average error from Eq. (18) for smooth particles with ¢,=—1.0.

e, boa a A Error e, bua A Error

0.98 0.920 1.56 3.64 0.318x 1073 0.98 0.836 4.84 0.490x 1073
0.95 0.850 1.30 3.69 0.878 X 10~ 0.95 0.826 4.73 0.405x 1073
0.90 0.832 1.33 3.39 0.397 x 107 0.90 0.817 4.69 0.298 X 1073
0.80 0.824 1.52 2.78 0.319x 1073 0.80 0.805 4.63 0.308 1073
0.70 0.817 1.71 2.39 0.596% 1073 0.70 0.795 4.79 0.469 %1073
0.60 0.802 1.72 2.53 0.369 % 1073 0.60 0.774 4.70 0.484 %1073

area fraction greater than ¢=0.5 to ¢=¢,,,,. The average
error is then minimized with respect to the two constants ¢,
and a. After the constants ¢,; and a are evaluated, A is
determined from Eq. (16).

The empirical constants obtained by the above fitting pro-
cedure are shown in Table II. It is observed that ¢,, is close
to the hexagonal-close-packing area fraction for nearly elas-
tic particles. However, for ¢, = 0.8, the value of ¢,, is lower
than the random-close-packing area fraction ¢.=0.82. The
value of the coefficient a increases with a decrease in the
coefficient of restitution, indicating that there is a sharper
divergence in the frequency for inelastic particles than that
for the random close packing of elastic particles. The only
exception is for nearly elastic particles with ¢,=0.98, which
has a relatively high value of the coefficient a. This high
value could be due to the transition from the random to the
ordered state, which happens simultaneously with the diver-
gence in the collision frequency. The collision frequency is
similar to tracking that for the random state at low area frac-
tions, and it crosses over to that for the ordered state as the
area fraction increases. Due to this, the value of a appears to
be higher than that for the random state.

For the case of smooth particles, we do not have sufficient
data to obtain a fit of type (16). This is because shear band-

10-1 N N M A | N ST
] &v
$0
# 9
ﬂ@

hY g
2102 A

T T T L |
102 10

(a) (¢ad — @)

ing occurs at an area fraction lower than the random-close-
packing area fraction for nearly elastic particles, and we are
not able to simulate a homogeneous system near the random-
close-packing area fraction. Therefore, we have attempted to
obtain an empirical fit using a=1 in Eq. (16). The coeffi-
cients A and ¢, for this system are shown in Table III. As in
the case of rough particles, we observe that the area fraction
at which the collision frequency diverges is lower than that
for random close packing. The only exception is for nearly
elastic particles with e,,=0.98. The collision frequency is also
significantly larger, for all area fractions that we were able to
simulate, than the collision frequency for a system of elastic
particles.

Figure 10 is a log-log plot of 1/v* versus ¢,;,— ¢. From
Fig. 10(a), the power-law dependence of 1/v" on ¢,,— ¢ is
clearly visible, and it can be seen that the exponent a in Eq.
(16) does vary as the coefficient of restitution is varied. In
contrast, Fig. 10(b) shows that in the case of smooth par-
ticles, the exponent a is very close to 1, and even the pref-
actor A in Eq. (16) is remarkably independent of the coeffi-
cient of restitution. Thus, for smooth particles, the universal
values of @ and A in Eq. (16), which are independent of
coefficient of restitution, can be used. In contrast, in the case
of rough particles, it is necessary to incorporate the depen-

107" 4

103

T T T L |
102 107

(b) (¢ad — @)

FIG. 10. Log-log plot of the inverse of the scaled collision frequency 1/v* as a function of ¢,;— ¢ for (a) rough particles and (b) smooth
particles for different values of the normal coefficient of restitution: ¢,=1.0 (+), ¢,=0.98 (O), ¢,=0.95 (A), ¢,=0.9 (V), ¢,=0.8 (), ¢,

=0.7 (), and ¢,=0.6 (). Here, ¢, is given in Tables II and III.
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FIG. 11. The pair distribution function x(¢) as a function of
area fraction for rough particles (filled symbols) and smooth par-
ticles (open symbols) for different values of the normal coefficient
of restitution: ¢,=0.98 (O), ¢,=0.95 (A), ¢,=0.9 (V), ¢,=0.8 (),
e,=0.7 (I>), and ¢,=0.6 (). The solid line shows the pair distri-
bution function of Torquato equation (12), while the top and bottom
dashed lines show the pair distribution functions of Luding equation
(14) for e,=0.6 and e,=0.98, respectively.

dence of a and A on the coefficient of restitution.

In order to make a comparison with kinetic theories for
disks, it is necessary to calculate the pair distribution func-
tion using Eq. (11), and then insert this into the theoretical
expressions for the pressure and the shear stress. The pair
distribution function of Torquato [33] [Eq. (12)] is clearly
lower than that observed in simulations (Fig. 11). The pair
distribution function of Luding [34] [Eq. (14)], which was
determined for an unsheared fluid, is clearly in closer agree-
ment with simulation results. However, even this underesti-
mates the pair correlation function for rough particles be-
cause it does not incorporate the fact that ¢,, for the sheared
state is lower than the random-close-packing area fraction
¢.=0.82. For smooth particles, we do not have sufficient
data near the close-packing area fraction to extract the exact
divergence, due to the onset of shear banding. For the data
obtained from simulations, it appears that fitting form (14)
provides quite a good fit for the pair distribution function.

The underestimation of pair distribution function (11) is
due to an underestimation of the collision frequency in the
case of rough particles at high area fractions for coefficients
of restitution less than about 0.8. Therefore, in the following
analysis of the stress tensor and the dissipation rate, we use
the actual pair distribution function obtained from the simu-
lations for the comparison, and not the pair distribution func-
tion from previous theoretical studies.

The stress tensor in the simulations is the sum of a
streaming and a collisional part. The streaming stress is
given by

O“Ej: <PCiCj>, (19)

where p, the number density, is the number of particles per
unit area (the mass of the particles is considered to be 1), and
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FIG. 12. The scaled pressure (p/4?) as a function of area frac-
tion for rough particles (filled symbols) and smooth particles (open
symbols) for different values of the normal coefficient of restitution:
¢,=0.98 (O), ¢,=0.95 (A7), ¢,=0.9 (V), ¢,=0.8 (), ¢,=0.7 (I>),
and ¢,=0.6 (O).

c; and c; are the fluctuating velocities. The collisional stress
tensor is obtained using the expression

> (Auk;, (20)

g;i=—
Y ATcollisions

where A is the simulation area, 7 is the time over which
averaging is carried out, Au is the change in velocity of a
particle during collision, and k is the unit vector in the di-
rection of the line joining the centers of the particles. The
total stress is determined as the sum of the streaming and
collisional parts.

The total pressure, p=(0,,+0,,)/2, is shown as a func-
tion of the area fraction at different coefficients of restitution
in Fig. 12. The pressure is scaled in two ways in these fig-
ures. The scaled pressure (p/7) is shown in Fig. 12, while
the pressure scaled by the temperature (pd”/T) is shown in
Fig. 13. Note that the pressure has dimensions of force per
unit length in two dimensions. It is observed that there is an
increase of about 2 orders of magnitude in the pressure when
scaled either by the square of the strain rate or the tempera-
ture. The pressure decreases as the coefficient of restitution
decreases at constant strain rate, because the temperature de-
creases as the particles are made more inelastic. When scaled
with the temperature, however, the pressure is remarkably
independent of the coefficient of restitution for smooth par-
ticles, indicating that the equation of state is very insensitive
to the coefficient of restitution for a sheared inelastic fluid.
For rough particles, the pressure scaled by the temperature
increases as the coefficient of restitution is decreased. The
Jenkins-Richman [2] theory is close to the simulation results
for nearly elastic particles, provided the pair distribution
function from simulations is inserted into the theory. As the
coefficient of restitution is decreased, the theory tends to
overpredict the pressure.
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FIG. 13. The scaled pressure (pd?/T) as a function of area fraction for (a) smooth particles and (b) rough particles for different values
of the normal coefficient of restitution: ¢,=0.98 (O), ¢,=0.95 (A), ¢,=0.9 (V), ¢,=0.8 (1), ¢,=0.7 (>>), and ¢,=0.6 (). The filled
symbols show the results from simulations, while the open symbols are the theoretical results of Jenkins and Richman [2] with the pair

distribution function obtained from the event-driven simulations.

Another way to scale the pressure is using the collision
frequency pd/ v\T. This scaling is appropriate in the limit of
high area fraction, where the transmission of stress is prima-
rily collisional. Figure 14 shows the pressure scaled in this
manner as a function of the area fraction. In contrast to the
increase in pressure of 2 orders of magnitude in Fig. 12, we
observe that the pressure scaled with the collisional fre-
quency is remarkably invariant with area fractions even as
the random-close-packing area fraction is approached. Even
for the lowest coefficient of restitution ¢,=0.9, the pressure
decreases only by a factor of 2 when scaled by the collision
frequency. This clearly indicates that the large increase in
pressure in the close-packing limit is due to a similar in-
crease in the collision frequency, while the average impulse
in each collision (proportional to the fluctuating velocity of
the particles) remains finite as the close-packing limit is ap-
proached.

The ratio of the shear stress to the pressure is shown in
Fig. 15. It is clear from this figure that the ratio of the shear
to normal stress approaches a constant value as the close-
packing limit is approached. There are two significant results
in this figure. The first is that the pressure and the shear
stress diverge at the same area fraction, and not at two dif-
ferent area fractions. Further, since the ratio of the pressure
and collision frequency is finite, the divergence of the shear
stress also occurs at the same area fraction as the divergence
of the frequency. From this, it can be inferred that as in the
case of the pressure, the divergence in the shear stress is due
to the divergence in the collision frequency as the close-
packing area fraction is approached; the average impulse in a
collision remains finite. A second significant result is that the
divergence in the shear stress has the same power-law behav-
ior as the divergence in the pressure, since the ratio is finite
as the close-packing limit is approached.

The ratio of the shear stress to pressure also has another
physical interpretation in the context of the flow down an

inclined plane [12,35], since the ratio o,,/p=tan(6), where
is the angle of inclination from the horizontal. For the pres-
ence of a stable flow, it is necessary for the tan(#6) to increase
as the area fraction is decreased from the close-packing limit.
This implies that the slope of the o,,/p vs ¢ curve has to be
negative in the close-packing limit. From Fig. 15, we ob-
serve that the slope of the a,,/p vs ¢ curve is positive for
nearly elastic particles with coefficients of restitution greater
than about 0.9, indicating that there will be no stable flow for
nearly elastic particles. However, when the coefficient of res-
titution decreases below about 0.8, we observe that the ratio
o,,/p increases as the area fraction is decreased near the
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FIG. 14. The scaled pressure (pd/w\T) as a function of area
fraction for rough particles (filled symbols) and smooth particles
(open symbols) for different values of the normal coefficient of
restitution: ¢,=0.98 (O), ¢,=0.95 (A), €,=0.9 (V), ¢,=0.8 (),
e,=0.7 (>>), and ¢,=0.6 (O).
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FIG. 15. The ratio of shear stress to pressure (o, / p) as a function of area fraction for (a) rough particles and (b) smooth particles for
different values of the normal coefficient of restitution: ¢,=0.98 (O), €,=0.95 (A), ¢,=0.9 (V), ¢,=0.8 (), ¢,=0.7 (>>), and ¢,=0.6 ().
The filled symbols show the simulation results, while the open symbols show the theory of Jenkins and Richman [2] with the pair distribution

function determined from the simulations.

close-packing area fraction. This indicates that a stable flow
is possible for relatively inelastic particles. Interestingly, we
observe that the angle of inclination always increases with
the area fraction if the constitutive relation is of the form
proposed by Jenkins and Richman [2] for both smooth and
rough particles. This is despite the fact that the numerical
values of the ratio o,,/p obtained from the constitutive rela-
tions of Jenkins and Richman [2] are close to the simulation
values obtained here.

The normal stress difference [(o,—0y,)/p] is shown as a
function of area fraction in Fig. 16. The normal stress differ-
ence has a maximum of about 0.2 for the lowest area fraction
of 0.5 considered here, and it decreases as the area fraction
increases. It is further observed that the normal stress differ-
ence is positive at low area fractions, but it becomes negative
as the area fraction increases for highly inelastic particles. In
the limit of close packing, the normal stress difference is
numerically small for all coefficients of restitution, indicat-
ing that the approximation of an isotropic pressure is a good
one in this case.

The rate of dissipation of energy per unit area is shown in
Figs. 17 and 18 scaled in two ways. In Fig. 17, the rate of
dissipation of energy is scaled by 7%2. When scaled in this
manner, the rate of dissipation of energy increases with area
fraction in the close-packing limit. The increase is about 2
orders of magnitude when the area fraction increases from
0.5 to about 0.75. In the limit of high area fraction, it is more
appropriate to scale the rate of dissipation of energy by the
collision frequency, since the collision frequency diverges in
this limit. The rate of dissipation of energy scaled in this
manner, D/ vT(1 —ei), is shown as a function of area fraction
in Fig. 18. It is clearly seen that when scaled in this manner,
the rate of dissipation of energy decreases as the close-
packing area fraction is approached, but the decrease is only
by about a factor of 2 in the close-packing limit. This indi-
cates that, as expected, it is more appropriate to scale the

dissipation rate by the collision frequency in the limit of
close packing.

There is a significant difference in the ratio D/T? be-
tween simulations and the theory of Jenkins and Richman
[2], as shown in Fig. 17, even when the pair distribution
function from the simulations is used in the theory. The
theory predicts a much higher dissipation rate, and the dif-
ference is an order of magnitude for rough particles at e,
=0.6 and at the highest area fractions analyzed here. A simi-
lar difference was observed for a three-dimensional granular
flow as well. The difference was because the distribution of
relative velocities in theory is assumed to be a Gaussian dis-
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FIG. 16. The normal stress difference [(o,—0,)/p] as a func-
tion of area fraction for rough particles (filled symbols) and smooth
particles (open symbols) for different values of the normal coeffi-
cient of restitution: €,=0.98 (O), €,=0.95 (A), €,=0.9 (V), e,
=0.8 (), ¢,=0.7 (>>), and ¢,=0.6 ().
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FIG. 17. The scaled rate of dissipation of energy (D/T%?) as a function of area fraction for (a) smooth particles and (b) rough particles
for different values of the normal coefficient of restitution: ¢,=0.98 (O), ¢,=0.95 (A), ¢,=0.9 (V), ¢,=0.8 (), ¢,=0.7 (>>), and e,
=0.6 (). The filled symbols show the results from simulations, while the open symbols are the theoretical results of Jenkins and Richman

[2] with the pair distribution function obtained from the simulations.

tribution. In simulations, it was found that the relative veloc-
ity distribution is very different from a Gaussian for e,
=0.8, and the distribution function approaches an exponen-
tial distribution at the lowest coefficients of restitution ana-
lyzed. In Sec. IV, we analyze the relative velocity distribu-
tion in order to ascertain the cause of the difference in
dissipation rates between theory and simulations.

IV. TWO-PARTICLE DISTRIBUTION FUNCTION

The transport of momentum and energy takes place pri-
marily due to the collisional mechanism in the limit of high
area fractions. These transport rates can be related to the
distribution of the relative velocities for pairs of colliding
particles. In a gas of elastic particles at equilibrium, the dis-
tribution of the relative velocities is a Gaussian distribution
with a variance equal to two times the translational tempera-
ture. In a gas of inelastic particles under shear, it was found
in [22] that the relative velocity distribution has an exponen-
tial form at low coefficients of restitution due to correlations
between particles. Here, we examine whether correlations
between particles alters the nature of the relative velocity
distribution in the shear flow of inelastic disks.

In a steady shear flow, it is necessary to define the relative
velocity distribution in terms of the difference in the absolute
velocities of the colliding particles, rather than the difference
in their fluctuating velocities. This is because the mean ve-
locity U is a linear function of distance in the gradient direc-
tion. We consider two particles o and S with positions x,,
and Xg, respectively, and consider the mean velocity to be
zero at the location x,. In this case, the relative velocity
distribution is only a function of the separation between the
two particles, X,5=(X,~Xg), and does not depend on the
absolute positions of the two particles. The relative velocity
distribution is defined as follows. The probability distribution
that a particle a with position and velocity (x,,u,,®,) is in

contact with a second particle with position and velocity
(xg,ug, wg), such that the unit vector from the center of par-
ticle & to B is k, is defined as F(x,.u,,®,,05, 0g.k). Here,
U, Ug, o, and wp are defined to be the precollisional ve-
locities of the particles. For the purposes of calculating the
stresses and dissipation rates, it is convenient to express the
particle velocities in terms of the velocity of the center of
mass, v,

v=(u,+ug)2, (21)

and the velocity difference
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FIG. 18. The scaled rate of dissipation of energy [D/vT(1
—ei)] as a function of area fraction for rough particles (filled sym-
bols) and smooth particles (open symbols) for different values of
the normal coefficient of restitution: ¢,=0.98 (O), ¢,=0.95 (A),
e,=0.9 (V), ¢,=0.8 (), ¢,=0.7 (>>), and ¢,=0.6 ().
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W=u,-Ug. (22)

In a similar manner, the angular velocities of the two par-
ticles at contact can also be written in terms of the sum of the
two angular velocities,

V=0, + wg, (23)
and one-half of the difference in angular velocities,
© = (0, — wp)/2. (24)

It can easily be verified that the Jacobians for these two
transformations is 1.

For the calculation of the stress and dissipation rates, it is
sufficient to consider the distribution of relative velocities
alone, since the collisional impulse depends only on the dif-
ference in velocities of the particles. The distribution of rela-
tive velocities is obtained by integrating the two-particle ve-
locity distribution over the center-of-mass velocity and the
sum of the angular velocities,

f(w,v,k):Jdvf dwF(u,u5 0, wgk). (25)

For future reference, we also define the reduced distributions
fw(w.k) and f,(v,k) for the relative velocity and angular
velocity, respectively,

fw(w,k)=Jdvf(w,v,k), (26)

Sovk) = f dwf(w,v,k). (27)

The relative velocity can also be resolved into its compo-
nents along the line joining the centers of the particles (w,,),
and perpendicular to the line joining the centers of the par-
ticles (w,),

w,=w-k, (28)

w,=w-(kXe,), (29)

where e is the unit vector in the direction perpendicular to
the plane of flow. For two-dimensional disks, the direction of
the angular velocity is always perpendicular to the plane of
flow, so the angular velocity is a scalar. The reduced distri-
butions for each of these velocity components can be written
as

Soonw,,K) = f dvf dw,f(w,v,k), (30)
fWI(WZ’k) = f de dW”f(W, v, k)’ (3 1)
fvk)= J dwf(w,vK). (32)

The relative velocity distribution defined in Eq. (32) is a
function of the orientation vector k of the line joining the
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centers of the disks at collision. It is convenient to describe
this dependence using a Fourier expansion in the angle 6 of
the line joining centers with the flow direction,

Funw k) = £2w) 2 ["(w)cos(n) + h)(w)sin(n6)],
1

(33)
where the component distributions £, ¢™, and A" are
given by

l 2
faor=5= | defu(wk), (34)
2w ),
1 2m
g(w",3=; f dof,,,(w.k)cos(nb), (35)
0
1 2
hl) =~ f d6f,,,(w.K)sin(n6). (36)
™Jo

Similar distributions can be defined for f,, and f,, but these
are not analyzed here, because the distributions of the tan-
gential relative velocity and the relative angular velocity do
not show large deviations from a Gaussian distribution. The
largest deviation from a Gaussian distribution is for the rela-
tive normal velocity at contact, and so we analyze the func-
tions 42" and g™ in further detail. Based on symmetry, /!
and givln are zero. The distributions givzr)l and hivzrz are related to
the normal stress difference and the shear stress, and so these
are analyzed in further detail.

First, we analyze the isotropic component of the normal
velocity distribution, VBZ(W,I) in Eq. (33). Figures 19 and 20
show the relative velocity distribution for two different area
fractions, ¢=0.5 and ¢=0.75, and for different coefficients
of restitution. As noted earlier, for a dense gas of elastic
particles in the absence of shear, the distribution of relative
velocities is a Gaussian distribution with variance equal to
two times the translational temperature. For a gas of inelastic
particles, we find that the distribution function is close to a
Gaussian for nearly elastic particles with coefficient of resti-
tution close to 1. However, as the coefficient of restitution
decreases, the distribution function becomes very different
from a Gaussian, and is closer to an exponential distribution
at the lowest coefficient of restitution e,=0.6 considered
here. The distribution function has a similar form for both
smooth and rough particles. The variance of the distribution
shows a significant decrease as the coefficient of restitution
decreases, and it also decreases as the area fraction is in-
creased.

In contrast to the relative velocity along the line joining
the centers of the particles at contact, the relative velocity
perpendicular to the line joining centers w,, and the relative
angular velocity w, do not show a significant deviation from
a Gaussian distribution, as shown in Fig. 21. The relative
tangential velocity at contact is very well described by a
Gaussian distribution, even when the distribution function is
1% of its maximum value at a high area fraction of 0.75. In
addition, it is clear that the variance of the relative velocity
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FIG. 19. The relative velocity distribution vgz(wn) as a function of w, /27 in (a) a linear plot and (b) semilogarithmic plot for area
fraction ¢=0.5 for rough particles with ¢,=1.0 and ¢,=0.95 (O), ¢,=1.0 and ¢,=0.8 (A), and ¢,=1.0 and ¢,=0.6 (V), and for smooth
particles with ¢,=—1.0 and ¢,=0.95 (<), ¢,=—1.0 and ¢,=0.8 (I>), and ¢,=—1.0 and ¢,=0.6 (). The broken lines are the best fits of
composite distribution function (37). The solid line shows the Gaussian distribution for elastic disks.

distribution along the tangential direction is two times the
translational temperature, as expected for a gas of elastic
particles at equilibrium.

Even though the relative velocity distribution along the
line joining the centers is very different from a Gaussian, the
single-particle velocity distributions are close to a Gaussian.
Figure 22 shows that the single-particle velocity distributions
along both the flow and gradient directions, as well as the
angular velocity distribution, are well approximated by
Gaussian distributions even at area fractions as high as 0.75

and coefficients of restitution as low as 0.6 for rough par-
ticles and 0.7 for smooth particles. This shows that, as in the
case of the shear flow of three-dimensional spheres, the
change in the form of the relative velocity distribution is not
due to the change in the form of the single-particle velocity
distribution, but rather due to the correlation in the velocities
of neighboring particles.

The above analysis shows that while the single-particle
velocity distribution and the relative velocity perpendicular
to the line joining centers are well described by Gaussian

101 1

V2T

FIG. 20. The relative velocity distribution along the line joining the centers of the particles, fff,’,f(wn), as a function of w,,/ V2T in (a) a
linear plot and (b) a semilogarithmic plot for area fraction ¢=0.75 for rough particles with ¢,=1.0 and ¢,=0.95 (O), ¢,=1.0 and ¢,=0.8 (A),
and ¢,=1.0 and ¢,=0.6 (V), and for smooth particles with ¢,=—1.0 and ¢,=0.95 (<), ¢,=—1.0 and ¢,=0.8 (>>), and ¢,=—1.0 and ¢,=0.7
(©). The broken lines are the best fits of composite distribution function (37). The solid line shows the Gaussian distribution for elastic
disks.
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FIG. 21. The relative velocity distribution f< (w,/ \E‘) as a function of w,/ \‘ZFT (solid symbols) and the angular velocity distribution
j«))(m/ 2T/ I) as a function of w/\27/1 (open symbols) in (a) a linear plot and (b) a semilogarithmic plot for area fraction ¢»=0.75 for rough
particles with ¢,=1.0 and ¢,=0.95 (O), ¢,=1.0 and ¢,=0.80 (A), and ¢,=1.0 and ¢,=0.60 (V), and for smooth particles with ¢,=—1.0 and
e,=0.95 (<), ¢,=—1.0 and ¢,=0.80 (>), and ¢,=—1.0 and ¢,=0.70 (< ). The solid line shows the Gaussian distribution for elastic disks.

distributions, the relative velocity along the line joining cen-
ters is very different from a Gaussian distribution. Therefore,
it is necessary to have a good model for this distribution in
order to calculate the stresses and the dissipation rate. For a
three-dimensional sheared granular flow [22], it was found
that the distribution function was well fitted by a composite
distribution, consisting of the sum of a Gaussian and an ex-
ponential part, of the form

C
f<wn( n) = e CXp(— awn)
1+e

1-C

t T (37)
NaT,,/2(1 + e, h

exp(— w/2 o) s

where the parameter « is calculated from the distribution
function obtained in the simulations using

=172
f dW”W wn

a= (38)

J dw,w.f o w,)

and T,,, the effective temperature for the relative normal
velocity fluctuations, is given by

2 J dw,w,fw,)
J dw,w, 0w,

The constant C in Eq. (37) is a fitted parameter, which is
obtained by minimizing the mean square of the deviation of
the actual distribution from composite distribution (37). We
attempt to use fitted form (37) to fit the distribution in two
dimensions as well. The composite distribution, shown by

Ty = (39)

Ql\f|w

the broken lines in Figs. 19 and 20, are found to be in good
agreement with the distribution function obtained from simu-
lations for rough particles, even at the intermediate value of
e,=0.8, at which neither the Gaussian nor the exponential
distribution provides a good fit.

The parameters « and C are shown as a function of e, for
different area fractions in Figs. 23 and 24. These graphs
show many features which are identical to those observed for

0.5 1 1 1 1 1

f(Ux)v f(gy)v f(w)

(0 VT), <vy/f

ol

FIG. 22. The single-particle distribution functions for area frac-
tion ¢=0.75. The different symbols are as follows: O—f(v,) as a
function of v,/ VT for rough particles with ¢,=1, ¢,=0.6; A—f(v,)
as a function of vy/xﬁw for rough particles with e,=1, ¢,=0.6;
V—f(w®) as a function of w/VT/I for rough particles with ¢,=1,
,=0.6; <—f(v,) as a function of v,/ T for smooth particles with
e,=-1, ¢,=0.6; and >—f(v,) as a function of vy/\fT for smooth
particles with e¢,=—1, ¢,=0.6. The solid line shows the Gaussian
distribution for elastic disks in the absence of shear.
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FIG. 23. The parameters « in normal velocity distribution (37)
for ¢,=0.98 (O), ¢,=0.95 (A), €,=0.9 (V), ¢,=0.8 (), €,=0.7
(>), and ¢,=0.6 (<), and for smooth particles ¢,=—1.0 (open sym-
bols) and e,=1.0 (filled symbols).

a three-dimensional shear flow. It is observed that C is close
to 1 for ¢,=0.6,0.7. It decreases to about 0.5 for ¢,=0.8, and
is close to O for ¢,=0.9 and 0.95. This indicates a clear
change in the nature of the distribution function from a
Gaussian to an exponential form at about e¢,=0.8. However,
unlike in the three-dimensional case, we find that the param-
eter C is not a constant, but seems to increase gradually as
the area fraction is increased in two dimensions.

Next, we briefly analyze the components g(z) and hifn de-
fined in Egs. (35) and (36). Rather than analyze the distribu-
tions themselves, we examine the ratios gwn / fw) and hivzrz/ ‘2
in Fig. 25. The distribution ratio h(2 / 0) is nearly a constant

for nearly elastic particles with en—0.95, but it does show
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FIG. 24. The constant C in distribution function (37) as a func-
tion of area fraction at ¢,=0.98 (O), ¢,=0.95 (A), ¢,=0.9 (V), ¢,
=0.8 (), ¢,=0.7 (>>), and ¢,=0.6 (<) and for smooth particles
e,=—1.0 (open symbols) and ¢,=1.0 (filled symbols).
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some variation with the relative velocity as the coefficient of
restitution is decreased. However, it should be noted from
Fig. 20 that the distribution function v?,z decreases by about 2
orders of magnitude when w,/\2T varies from 0 to 1, and
the variation in hfv,z/ 0 ) is much smaller over this range. The
ratio glz)/ v?n has an even smaller magnitude, though it does
show a transition from negative to positive values at the
lowest coefficient of restitution of 0.6. The variations in the
components of the distribution are also very similar to those
obtained for three-dimensional spheres [22], indicating that
the nature of the variation in the relative velocity distribution
is a system property which is independent of the dimension-
ality of the system.

V. CONCLUSIONS

The system considered here was a two-dimensional shear
flow of inelastic disks. The interaction between the disks is
described by a collision model which contains two coeffi-
cients of restitution, the normal coefficient of restitution for
the relative velocity along the line joining the centers and the
tangential coefficient of restitution for the relative velocity
perpendicular to the line joining the centers. Two types of
particles are considered here, smooth particles, for which
there is no change in the relative tangential velocity in a
collision, and rough particles, where the relative tangential
velocity is reversed in a collision. A homogeneous linear
shear flow was generated using the Lees-Edwards boundary
conditions. The event-driven simulation technique for hard
disks was used, where the collisions are considered to be
instantaneous. In the simulation, at a given instant, the colli-
sion times for pairs of particles are calculated on the basis of
their positions and velocities, and the collision which occurs
within the shortest time is determined. All particles are ad-
vanced by this time, and the velocities of the colliding par-
ticles are altered in accordance with the collision rules. Col-
lision times are once again calculated and the procedure is
repeated. The event-driven simulation technique suffers ac-
cumulation of computation errors at high area fractions when
the time between collisions becomes numerically small, re-
sulting in overlaps between particles, and so it cannot be
implemented for area fractions very close to the close-
packing area fraction. In two-dimensional disks, we also find
that “shear banding” takes place at high area fractions, where
two dense crystallized regions and nearly zero strain rate are
separated by a relatively dilute shearing region. Since we are
considering homogeneous shear flow, we have not been able
obtain results after shear banding takes place. Shear banding
is found to occur when the coefficient of restitution is greater
than about 0.9, and the minimum area fraction for shear
banding increases as the coefficient of restitution decreases.
We do not find shear banding for coefficients of restitution
less than 0.9, possibly due to the numerical errors resulting
in particle overlaps at a lower area fraction.

Since there is no material time scale in the system (colli-
sions are instantaneous), the only time scale is the inverse of
the strain rate 7y of the imposed flow. The granular tempera-
ture is proportional to 37 through the energy balance equa-
tion. Therefore, the dynamics of the flow depends only on

061303-16



STRUCTURE AND DYNAMICS OF TWO-DIMENSIONAL ..

0.2 L L

A
oVV'a VEVA
VXAAAA YN
VVAA

PHYSICAL REVIEW E 79, 061303 (2009)

<< <

59%39

<1<1<1<]<1<1 AaqdTILRE
R forrs

><] >4,

OD<1

o@&é@

(a) (wn/V2T)

FIG. 25. The distribution ratios (a) g(z)/ 9 and (b) n?y 0

wn wn

0.8 L L
0.7 4 Xxxx_
vVX <&
VAA OO
0.6 - STAA 0O b
VVAAOQ >
VVAéOO P
<2 054 vaB807 P B
=S Val >
=3 Zao P g
Ny @XA > O
3 0490, 0@9 > <
g apb 099%
=3 OOQQQOOQQ Vv@b &5
~— 0.3 1 ‘@ﬂ% %@VﬁgA @@@@
AAAAAAAAAAA
<44
0.2 4 < <4
0.1 4 =
0 T T
0 1 2 3
(b) (wn/V2T)

., as functions of w,/ V2T for smooth particles with ¢,=—1.0 and ¢,=0.95 (O),

e,=—1.0 and ¢,=0.80 (A\), and ¢,=—1.0 and ¢,,=0.70 (V), and for rough particles with ¢,=1.0 and ¢,=0.95 (<), ¢,=1.0 and ¢,=0.80 (>>),

and ¢,=1.0 and ¢,=0.70 (O).

the area fraction and the coefficients of restitution. By di-
mensional analysis, the collision frequency is proportional to
v times a function of the area fraction and coefficients of
restitution, all components of the stress are proportional to 7
times a function of the area fraction and coefficients of res-
titution, and the rate of dissipation of energy is proportional
to 7’ times a function of the area fraction and the coefficients
of restitution. The focus of our analysis has been to deter-
mine the dependencies of these dynamical quantities on the
area fraction and the coefficients of restitution in the close-
packing limit. Of particular interest is the comparison of the
shear flow of two-dimensional disks with that of three-
dimensional spheres studied earlier [21,22].

In the present analysis, we first examined the structure, or
relative arrangement of particles, in a two-dimensional shear
flow using the collisional order parameter gg. It if found that
shear does reduce the order parameter gg, and increases the
area fraction at which ordering takes place. However, partial
ordering does take place even at the lowest area fractions
considered here. This is in contrast to three-dimensional
flows where there is a complete suppression of ordering by
the mean shear. This difference could be due to the differ-
ence in the topological stabilities of two- and three-
dimensional ordered structures. It is well known that a two-
dimensional ~ hexagonal  close-packed  structure is
topologically stable to small changes in the position of the
disks, whereas a three-dimensional face-centered-cubic
structure is topologically unstable to small changes in the
positions of the spheres [28,31]. In addition, it is well known
that it is very difficult to obtain a glassy state of two-
dimensional disks by rapid compression, since they tend to
crystallize easily. In contrast, it is easier to realize glassy
states for a three-dimensional hard-sphere system. All of
these results are qualitatively in agreement with the present
finding that shear has a smaller effect on the ordering of
two-dimensional disks, in contrast to three-dimensional
spheres. The difference in ordering also implies that the
qualitative nature of the results for two-dimensional disks

cannot be easily extrapolated to the shear flow of three-
dimensional spheres. Figures 3 and 4 show, quite clearly, that
the order parameter g, is independent of the coefficient of
restitution for e, =0.9. There is some variation in the order
parameter for nearly elastic particles with ¢,>0.9. But for
e,=0.9, all the data collapse onto a universal curve which is
very different from that for elastic particles. This indicates
that if the particles are sufficiently inelastic, the state of order
in the system does not depend on the specific value of the
coefficient of restitution.

The variation in the collision frequency of the particles
with the area fraction and coefficient of restitution was ana-
lyzed. For two-dimensional disks at equilibrium in the ab-
sence of shear, the collision frequency depends on the state
of ordering of the system. For a crystallized state, the colli-
sion frequency diverges at the hexagonal-close-packing area
fraction of about 0.91, but for the random-close-packed state,
the divergence occurs at the random-close-packing area frac-
tion of about 0.82. In the present analysis, for nearly elastic
rough particles (e¢,=0.98), we find that there is a gradual
increase in the ordering as the area fraction is increased, in
contrast to the nearly discontinuous increase in the order pa-
rameter for elastic disks in the absence of shear. Even though
the collision frequency for ¢,=0.98 is always higher than
that for elastic particles in the absence of shear, the area
fraction ¢,,; at which the collision frequency diverges (by
extrapolation of the data at high area fractions), referred to as
the area fraction for arrested dynamics, is close to the
hexagonal-close-packing area fraction of 0.91 for e,=0.98.
However, as the coefficient of restitution decreases, the value
of ¢,; shows a decrease from about 0.85 at ¢,=0.8 to a
minimum of about 0.80 at ¢,=0.6. The divergence of the
collision frequency for smooth particles is more difficult to
establish, due to the onset of shear banding when the colli-
sion frequency is still relatively small. However, the simula-
tion results suggest that the qualitative behavior of the varia-
tion in the collision frequency with area fraction is similar
for rough and smooth disks. For smooth particles, though
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¢,q decreases systematically as the coefficient of restitution
is decreased, the dependence of the scaled collision fre-
quency v on ¢,,—¢ is independent of the coefficient of
restitution, as indicated by Fig. 10(b). However, a similar
data collapse is not evident for rough particles, and Fig.
10(a) clearly shows that there are small but perceptible dif-
ference in the dependence of v* on ¢,,— .

The divergence of the collision frequency has been dis-
cussed before in other contexts. It is implicitly present in
theories which incorporate a pair distribution function which
diverges at the random-close-packing volume fraction [33].
For a hard-particle system, since the collision frequency is
proportional to VT times the pair distribution function, the
collision frequency also diverges. In kinetic theories for
shear flows of granular materials [21,22], the temperature
and the strain rate are coupled through the energy balance
condition, and so the ratio of the collision frequency and the
strain rate diverges when the pair distribution function di-
verges. The divergence is also present in theories of jamming
[36], where the characteristic frequency, which reduces to the
collision frequency in the unjammed state from energy bal-
ance arguments, diverges. The interesting issue here is that
we find that the volume fraction for the divergence in the
presence of shear depends on the coefficient of restitution of
the particles, and it is not the same as that for a fluid of
elastic particles at equilibrium. This has been incorporated in
this section.

The qualitative behavior of the collision frequency ob-
tained here is very different from that for three-dimensional
spheres [21,22]. In the case of spheres, it was found that the
close-packing volume fraction in the presence of shear is
always smaller than the random-close-packing volume frac-
tion (0.64) for elastic disks in the absence of shear. For the
lowest coefficients of restitution e,=0.6, the random-close-
packing volume fraction was about 0.58, which is 10% lower
than the value of 0.64 for elastic hard spheres in the absence
of shear. In contrast, we find that for hard disks at the lowest
coefficients of restitution e,=0.6, the close-packing area
fraction at which the frequency diverges, ¢,,=0.8, is only
about 2% lower than that for the random close packing of
hard disks. At higher coefficients of restitution in the range
of 0.8-0.9, ¢,, is in the range of 0.82—0.83, which is close to
the random-close-packing area fraction for elastic hard disks.
This is due to a combination of two effects, the decrease in
the close-packing area fraction due to shear and the increase
due to partial ordering. For this reason, it is also found that
the pair distribution function previously derived by Luding
[34] for two-dimensional disks in the absence of shear,
which is designed to diverge at the random-close-packing
area fraction of 0.82, is in good agreement with the simula-
tion results for rough particles with coefficient of restitution
in the range of 0.8-0.9, though it underestimates the collision
frequency for coefficient of restitution of less than 0.8.

Even though the collision frequency diverges as the area
fraction for arrested dynamics is approached, it is found that
there is a much smaller variation in the granular temperature
in this limit. There does appear to be an increase in the
granular temperature for nearly elastic particles at e,=0.98.
But for lower coefficients of restitution, the granular tem-
perature seems to approach a finite value. We find that the
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pressure is well predicted by the theory of Jenkins and Rich-
man [2], provided the pair distribution function obtained
from the simulations is used in the theoretical expression for
the pressure. The pressure increases by about an order of
magnitude when the area fraction increases from 0.3 to about
0.75. However, the ratio of the pressure to the collision fre-
quency shows a relatively small variation, indicating that the
collisional mechanism of stress transmission dominates at
high area fractions. When scaled by the collision frequency,
there is a variation of only a factor of about 3 over the same
range. This clearly indicates that the collision frequency is
the relevant variable in this case, rather than the temperature
or the strain rate. Therefore, a much better data collapse is
obtained by scaling the dynamical variables by the collision
frequency rather than the pressure.

The first normal stress difference [(o,,—0y,)/p] was
found to be numerically small for all the area fractions and
coefficients of restitution studied here. The first normal stress
difference was found to be positive at low area fractions, but
became negative at the highest area fractions studied here.
The magnitude of the first normal stress difference is less
than 0.2 for the lowest area fraction of 0.5 and the lowest
coefficient of restitution of ¢,=0.6, and the magnitude de-
creased as the area fraction increased. This indicates that the
approximation of an isotropic pressure is a good one for a
dense flow of inelastic disks, and this assumption gets better
as the area fraction approaches the close-packing area frac-
tion.

The ratio of the shear stress to pressure was examined and
compared with the theoretical results of Jenkins and Rich-
man [2]. It was found that the numerical value of the ratio
predicted by the theory is quite close to that obtained from
simulations, and the difference is only about 50% at the
highest area fraction and the lowest coefficient of restitution
considered here. However, there is a large qualitative differ-
ence in the nature of the variation in o,/ p with area fraction.
The constitutive relations from theory predict that o,,/p al-
ways increases with area fraction in the close-packing limit.
In contrast, in the simulations, we find that the ratio O/p
decreases as the area fraction increases for coefficient of res-
titution e, less than about 0.9. This difference is significant
because o,/ p can also be physically interpreted, for the flow
down an inclined plane, as tan(6), where 6 is the angle with
respect to the horizontal. For a stable flow to exist, it is
necessary for o,,/p to decrease as the area fraction increases
near the close-packing limit. Since the constitutive relations
of Jenkins and Richman [2] always predict the opposite, it
has been assumed that kinetic theories are not applicable for
the flow of granular materials down an inclined plane. The
present simulations show though there is a relatively small
difference in the numerical value of o,,/p between theory
and simulations, this does result in a change in the slope of
the o,,/p versus area fraction curve. The simulation results
have the correct slope required for a stable flow for coeffi-
cients of restitution of less than about 0.9.

The rate of dissipation of energy is not well predicted by
the theoretical expressions of Jenkins and Richman [2], how-
ever, even when the pair distribution function obtained from
simulations is used. At the lowest coefficient of restitution of
about 0.6, the theoretical prediction for the dissipation rate is
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about 1 order of magnitude higher than that obtained from
simulations. A similar feature was observed for the three-
dimensional flow of inelastic spheres [21,22], and the reason
for the difference was found to be the difference in the forms
of the distribution of relative velocities between pairs of col-
liding particles. This motivated a detailed analysis of the
distribution of relative velocities between colliding disks in
the present study. In the case of smooth particles, we have
examined the distribution of the relative velocity along the
line joining the centers of the two disks. For rough particles,
the relative velocity in the direction perpendicular to the line
joining centers has also been analyzed. In all cases, we find
that the single-particle velocity distributions in the flow and
gradient directions, as well as the angular velocity distribu-
tion for rough particles, are very close to a Gaussian distri-
bution, even when the relative velocity distribution is very
different from a Gaussian distribution.

First, we discuss the relative velocity distribution along
the direction of the line joining the centers of the disks. For
elastic disks at equilibrium in the absence of shear, the rela-
tive velocity distribution is a Gaussian, with a variance equal
to 27, where T is the temperature of the system. For nearly
elastic particles (e,=0.98), the relative velocity distribution
is found to be a Gaussian, with a variance close to 27. How-
ever, as the coefficient of restitution decreases, the relative
velocity distribution undergoes a transition to an exponential
distribution, and the variance of the distribution is signifi-
cantly smaller than 27. This qualitative behavior is identical
to that for the shear flow of inelastic spheres in three dimen-
sions, and indicates a significant correlation in the velocities
of the colliding particles. For rough particles, in the direction
perpendicular to the line joining centers, the velocity distri-
bution function is close to a Gaussian even when the coeffi-
cient of restitution is as low as 0.6, and strong correlation
effects are not observed.

This change in the form of the relative velocity distribu-
tion has a significant effect on the dynamical properties. This
is because in the limit of high area fraction, the transmission
of stress occurs mainly due to collisions, and the dissipation
of energy is only due to collisions. The collision frequency,
the stresses and the dissipation rate are proportional to the
first, second, and third moments of the relative velocity dis-
tribution. In kinetic theories (Jenkins and Richman [2]), the
Enskog approximation (the two-particle velocity distribution
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is the product of the single-particle velocity distributions) is
assumed. This approximation results in a relative velocity
distribution which is always Gaussian with a variance equal
to 2T if the single-particle velocity distribution is a Gaussian.
In the simulations, it is found that the relative velocity dis-
tribution is closer to an exponential at low coefficients of
restitution, with a variance much smaller than 27. Since the
variance is overestimated in the theory, the ratio of the pres-
sure to the collision frequency (or pair distribution function)
is overestimated, and the ratio of the dissipation rate to col-
lision frequency is also overestimated. This explains the dis-
crepancy between the dissipation rate from theory and simu-
lations which has been the subject of much study.

There are two important conclusions that can be drawn
with regard to the comparison of the dynamics of dense
sheared granular flows in two and three dimensions. The
structure and ordering in the shear flow of two-dimensional
disks is very different form the shear flow of three-
dimensional spheres. In the case of two-dimensional disks,
there is partial ordering at high area fractions, even though
the order parameter is lower than that in the absence of shear.
The area fraction for arrested dynamics for sheared inelastic
disks for coefficient of restitution e, less than about 0.9 is
close to the random-close-packing area fraction of 0.82 for
elastic disks in the absence of shear. Due to this, the
inelastic-hard-disk pair distribution function [34] is appli-
cable, to a good approximation, for sheared inelastic hard
disks as well. The second important conclusion is that the
effect of correlations on the relative velocity distributions for
sheared inelastic disks is found to be very similar to that for
sheared inelastic spheres in three dimensions. It is found that
the distribution changes in form from a Gaussian distribution
for nearly elastic particles to an exponential distribution at
the lowest coefficients of restitution studied here. A very
similar form for the relative velocity distribution was also
observed for sheared inelastic spheres in three dimensions
[21,22]. This correlation results in the significant overestima-
tion of the dissipation rate in kinetic theories where the En-
skog approximation is used, resulting in a relative velocity
distribution which is close to a Gaussian.
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