
J. Fluid Mech. (2010), vol. 646, pp. 59–90. c© Cambridge University Press 2010

doi:10.1017/S0022112009992722

59

Particle dynamics in a turbulent particle–gas
suspension at high Stokes number. Part 1.
Velocity and acceleration distributions

PARTHA S. GOSWAMI AND V. KUMARAN†
Department of Chemical Engineering, Indian Institute of Science,

Bangalore 560 012, India

(Received 20 December 2008; revised 14 October 2009; accepted 14 October 2009)

The effect of fluid velocity fluctuations on the dynamics of the particles in a turbulent
gas–solid suspension is analysed in the low-Reynolds-number and high Stokes number
limits, where the particle relaxation time is long compared with the correlation time
for the fluid velocity fluctuations, and the drag force on the particles due to the
fluid can be expressed by the modified Stokes law. The direct numerical simulation
procedure is used for solving the Navier–Stokes equations for the fluid, the particles
are modelled as hard spheres which undergo elastic collisions and a one-way coupling
algorithm is used where the force exerted by the fluid on the particles is incorporated,
but not the reverse force exerted by the particles on the fluid. The particle mean and
root-mean-square (RMS) fluctuating velocities, as well as the probability distribution
function for the particle velocity fluctuations and the distribution of acceleration
of the particles in the central region of the Couette (where the velocity profile is
linear and the RMS velocities are nearly constant), are examined. It is found that the
distribution of particle velocities is very different from a Gaussian, especially in the
spanwise and wall-normal directions. However, the distribution of the acceleration
fluctuation on the particles is found to be close to a Gaussian, though the distribution
is highly anisotropic and there is a correlation between the fluctuations in the flow
and gradient directions. The non-Gaussian nature of the particle velocity fluctuations
is found to be due to inter-particle collisions induced by the large particle velocity
fluctuations in the flow direction. It is also found that the acceleration distribution on
the particles is in very good agreement with the distribution that is calculated from
the velocity fluctuations in the fluid, using the Stokes drag law, indicating that there is
very little correlation between the fluid velocity fluctuations and the particle velocity
fluctuations in the presence of one-way coupling. All of these results indicate that the
effect of the turbulent fluid velocity fluctuations can be accurately represented by an
anisotropic Gaussian white noise.

1. Introduction
Particle-laden turbulent flows find applications in many industrial processes such

as energy conversion and air pollution control. In these flows, there is a strong
coupling between the turbulent fluctuations in the fluid velocity fields and the
fluctuating velocities of the particles. In order to analyse the stresses and the heat
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and mass transfer properties in turbulent suspensions, it is necessary to have a
good understanding of not only the mean flow of the gas and particles but also
the fluctuations in the two phases. The coupling is a two-way coupling; the fluid
turbulence contributes to the velocity fluctuations in the particles, and conversely,
the particle velocity fluctuations generate fluctuations in the fluid. Two-phase flow
models capture these interactions only in an indirect way, usually through a ‘particle
pressure’ term for the particle phase.

Here, we study the effect of fluid turbulence on the dynamics of the particle
phase in the high Stokes number limit, where the particle relaxation time is large
compared with the correlation time for the fluid velocity fluctuations in a particle-laden
turbulent Couette flow. In this limit, the effect of the turbulent velocity fluctuations
can be modelled as a fluctuating force acting on the particles with a variance, which
is related to the root-mean-square (RMS) of the fluid velocity fluctuations. The
objective of the present work is to analyse the effect of fluid velocity fluctuations
on the particle phase and propose a Langevin model that can be incorporated
into theories for granular flows in order to accurately represent the effect of fluid
turbulence. Most previous studies have focused on the complementary effect, which
is the effect of particle velocity fluctuations on the fluid turbulence; we review these
studies first, and then discuss studies of the effect of fluid turbulence on the particle
phase.

There have been several experimental and simulation studies to examine the effect
of particle fluctuations on the fluid turbulence. A compilation of experimental data
by Gore & Crowe (1989) indicated that small particles with size less than about
tenfold of the integral length scale of the fluid will attenuate the turbulence while
large particles will increase the intensity. Hetsroni (1989) attributed the effect of
large particles to the wake formation. Elghobashi (1994) parameterized turbulence
modification according to the particle volume fraction and the Stokes number based
on the large-eddy turnover time. They found turbulence modification when the solid
volume fractions are greater than O

(
10−6

)
; if the ratio of the particle response time

to the eddy turnover time is greater than unity, particles can augment the turbulence,
otherwise there will be attenuation.

Kulick, Fessler & Eaton (1994) did the experiments on vertical channel using
particle of Stokes number ranging from 0.57 to 3.0 with a mass loading up to
80 %, to investigate the turbulence attenuation. In their case, the Stokes number is
defined as the ratio of the particle relaxation time to the Kolmogorov time scale.
They observed greater attenuation in the transverse direction, and the attenuation
increases with increasing Stokes number and mass loading. Fessler, Kulick & Eaton
(1994) investigated the instantaneous particle concentration at the centre plane of a
vertical turbulent channel flow. They did the experiments with particles of different
Stokes number and found that maximum preferential concentration (deviation from
the random distribution) occurs when the Stokes number of the particles based on
the Kolmogorov time scale is of order 1. Khalitov & Longmire (2003) reported the
results of their channel flow experiment mainly focusing on the two-point gas–particle
and particle–particle correlation for the Stokes number (based on integral time scale)
of 0.2–10, and observed that the gas–particle covariance becomes very small when the
Stokes number is about 5. Hwang & Eaton (2006) have studied the effect of particle
on homogeneous and isotropic turbulence with the particle of diameter equivalent to
the Kolmogorov scale, and reported the attenuation level of 35 %–40 % for turbulent
kinetic energy and 40 %–50 % of the dissipation rate at a mass loading of 30 %.
Recently, Tanaka & Eaton (2008) have introduced particle momentum number (Pa)
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to understand the phenomena of turbulence modification by particle in the particle-
laden flows. Based on a compilation of previous experimental observations, they have
found turbulence attenuation region when the particle momentum number lies in
between a particular range, and turbulence enhancement occurs for a momentum
number outside this domain.

Two different approaches are used for modelling the multi-phase turbulent flow.
When the particle loading is relatively high so that the length scale of the fluid
motion is higher than the average spacing of the particle, both the fluid and
the particle phases are considered as the interpenetrating continuum phases. This
approach is called Eulerian–Eulerian or two-fluid modelling and in the second type,
for dilute particle-laden flows the fluid phase is considered as continuum and the
particles are tracked individually; this is called the Eulerian–Lagrangian approach.
Two-equation turbulence models for the fluid phase are used for the last three decades.
To describe the turbulent fluid phase, out of several models the most widely used one
is the turbulent energy-dissipation model, where the differential equations for
turbulence energy and the dissipation are used for the numerical simulation of
the flow field and the eddy viscosity is related to the energy and rate of dissipation.
In Eulerian–Lagrangian approach several models have been proposed to find out
the effect of turbulence on the particle. A detailed review can be found in Crowe,
Troutt & Chung (1996). In most of the models, the fluid velocity at the particle
position is taken as the sum of the local time-averaged velocity and a fluctuating
velocity selected from an isotropic Gaussian distribution with a variance related to the
turbulence energy (Yuu et al. 1978). Luu, Fontaine & Aubertin (1993) have proposed
the local turbulence velocity as a function of Lagrangian autocorrelation and Eulerian
spatial correlation function. Berlemont, Desjonqueres & Gouesbet (1990) used the
Lagrangian approach to describe the particle dispersion in turbulent flow.

In the two-fluid approach, the dispersed phase is also treated as the continuum.
Elghobashi & Abou-Arab (1983) and Rizik & Elghobashi (1989) had described the
fluid phase by κ−ε model with added inter-phase exchange terms. The other approach
of modelling the two-phase flow is based on the kinetic theory approach, which
utilizes the transports of the phase-space density to derive the continuum equations
for the two-fluid model (Reeks 1991). The development of the continuum equations
of dispersed phase of solid, non-colliding particle in a non-uniform turbulent gas flow
was derived by Reeks (1992). Reeks (1993) derived the particle Reynolds stress and
fluctuating inter-phase momentum transfer in a bounded shear flow ignoring the inter-
particle collisions. The same concept was used by Swailes & Reeks (1994) to study
the transport and deposition of high inertia particle in a particle-laden turbulent duct
flow. Hyland, McKee & Reeks (1999) presented probability density function kinetic
equation for particle dispersion in a homogeneous turbulent shear flow. In the case
of inhomogeneous particle-laden flow, the superiority of probability density function
(PDF)-based model over the advection diffusion-based model has been described
by Reeks (2005). Zaichik, Alipchenkov & Avetissian (2006) developed a statistical
model for predicting the collision rate of inertial particles in homogeneous isotropic
turbulence based on a kinetic equation for the two-point PDF of the particle-pair
relative velocity distribution. Shin & Lee (2002) obtained the non-equilibrium form
of the particle Reynolds stress as a function of Stokes number. They compared the
results with stochastic simulation of particle motion.

One of the earliest numerical simulations of particle-laden turbulent flows was
performed by Riley & Patterson (1974) to study the particle dispersion in decaying
isotropic turbulence. Squires & Eaton (1991b) investigated the effect of isotropic
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turbulence on the concentration field of the heavy particle. They carried out the
simulation for particle Stokes number 0.075–0.52 based on the large-scale turbulent
time scale, and observed that the concentration inhomogeneities are strongest for the
Stokes number of about 0.15. Elghobashi & Truesdell (1992) used direct numerical
simulation (DNS) to investigate particle dispersion in decaying isotropic turbulence,
including gravity and Basset history term in the particle equation of motion. They
have examined the regime where the particles’ relaxation time is of the order of
Kolmogorov time scale, and presented the results on time development of the
mean square displacement of the particles, Lagrangian auto correlation and the
turbulent diffusivity of the particle and the fluid points. Squires & Eaton (1990)
and Elghobashi & Truesdell (1993) studied the effect of particle fluctuations on
homogeneous turbulence. McLaughlin (1989) studied the aerosol particle deposition in
a channel flow applying DNS. Kallio & Reeks (1989) investigated the aerosol particle
trapping in a boundary-layer flow. All the previous workers neglected the particle–
particle collisions. Sundaram & Collins (1997) included inter-particle collisions and
investigated the collisional statistics and the turbulence modification in the case
of isotropic turbulent suspension. Li & McLaughlin (2001) reported the effect of
particle feedback on turbulence and the particle concentration profile in the case
of a vertical channel flow for particle of relaxation time, τv ∼ 200, when scaled
by the wall unit. They have reported the variation of particle concentration and
the particle mean square fluctuations along the cross-stream direction. Rouson &
Eaton (2001) investigated the preferential particle concentration field in the case of
passive transport of particles by a fully developed channel flow for the particle with
time constant 0.6–56 based on the centreline Kolmogorov time scale and found that
the preferential concentration occurs for Stokes number of the order of unity. They
have reported the correlation between the non-random particle distribution that
occurs at very low Stokes number with the local flow topology.

Taking into consideration the large computational requirements to simulate the
high-Reynolds-number turbulent suspension, Wang & Squires (1996) performed
large-eddy simulation (LES) for the particles with relaxation time up to 4 times
the wall time unit. They have performed one-way coupled simulation, without
considering inter-particle collisions, and reported the preferential particle distribution
at the near-wall region. Yamamoto et al. (2001) have performed the LES including
inter-particle collision. They have done the simulation for Stokes number up to 70
based on the inverse of the shear rate (which turns to be ∼200 based on the wall time
unit). They found that the inter-particle collisions disperse the particles, and there
is no correlation between the particle concentration and the turbulence structure
for St � 10. At the channel centre region, they found uniform distribution of the
particle at high Stokes number and the formation of the particle cloud at low Stokes
number. Kuerten (2006) has performed simulation for different subgrid models for
particle time constant of 1–25 based on the viscous wall time unit and compared
the results with direct numerical simulation. Carlier, Khaliji & Osterle (2005) have
investigated the dispersion of small particles in the turbulent shear flow by modelling
the directional dependency of fluid Lagrangian time scales. They have derived the
instantaneous fluid velocity at the particle position by using the Lagrangian time
scale. The continuous phase was modelled by low-Reynolds-number κ − ε model.

Turning to the effect of fluid flow on the particle phase, Louge, Mastorakos &
Jenkins (1991) investigated the effect of particle collision in the turbulent suspension
of a vertical pipe. They considered the particulate phase as heavy dilute colliding
grains, where the fluid exerts a drag force on the particles. In their case, the source of
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particle fluctuation is the inter-particle collision and not the turbulent fluid velocity
fluctuation. Kumaran & Koch (1993a ,b) analysed the effect of fluid drag on the
velocity distribution function of the particle phase for bidisperse particles settling
in a fluid, and Tsao & Koch (1995) considered the effect of shear of the particle
phase on the particle velocity distribution function. Fevrier, Simonin & Squires (2005)
investigated the velocity distribution of the heavy particles in the dilute gas–solid
homogeneous isotropic turbulent flow. They introduced the concept of partitioning
of the particle velocities into the mesoscopic Eulerian particle velocity field, which
accounts for all particle–particle and fluid–particle correlations and a quasi-Brownian
velocity distribution, which is based on the molecular chaos assumption. They have
shown that at the limit of large inertia, the spatial distribution and the velocities
of the particles become random and the particle motion becomes equivalent to the
Brownian motion. In their study, mesoscopic Eulerian formalism has been verified by
DNS and LES of isotropic turbulence.

In the present analysis, we investigate the effect of turbulence on the particle
statistics as a function of the ratio of the viscous relaxation time for the particle and
the time between collisions. Throughout the analysis, the particle size is considered to
be small enough that the maximum Reynolds number based on the particle velocity
and the gas density and viscosity, Rep = (ρgdu′/η), is small. Here, ρg and η are the
gas density and viscosity, and d and u′ are the particle diameter and the characteristic
velocity. In this analysis, the characteristic velocity is the largest among the fluid
fluctuating velocity u′

f , the particle fluctuating velocity v′ and the difference in the
mean velocities of the fluid and particle phases, (Uf − Up). Because of the very high
slip (high value of (Uf −Up)) between the particle and the air phase near the wall, the
particle Reynolds number is still higher near the wall, but the Reynolds number in
most of the regions of the Couette is in the range 0.5–10. In the low-Reynolds-number
regime, the drag force exerted by the fluid on the particle is given by the Stokes law
or the modified Stokes law, which takes into account the effect of inertia at low
Reynolds number. Simultaneously, the Stokes number, which is the ratio of particle
relaxation time to the fluid-integral time scale, St = (τv/τf ), is large (2–40). The
viscous relaxation time and the time between collisions can be estimated as follows.
If the drag force is given by Stokes law, the viscous relaxation time is given by
τv = (ρpd2/18η). The time between collisions is the inverse of the collision frequency,
which is τc = (nd2v′)−1, where n is the number of particles per unit volume and v′

is the fluctuating velocity of the particles. The ratio of these two time scales, (τc/τv),
which is given by (18η/(ρpd4nv′)), is sensitive to both the particle diameter (it varies
as d−4) and the mass loading n. The parameter range covered by our analysis is
equivalent to particles of 39 μm in a plane Couette in the absence of gravity, in which
the Reynolds number is 750 based on the half of the channel width and the half of
the difference between the velocities of the wall. In this case, the viscous relaxation
time is large compared to the correlation time for the fluid velocity fluctuation and
it is expected that the velocity fluctuations due to the turbulence can be treated as
a random forcing on the particle phase. We examine the effect of this forcing on
the particle fluctuating velocities for a plane Couette flow in Part 2 (Goswami &
Kumaran 2010).

The fluid and particle velocity fluctuations in the central region of the Couette are
analysed using two procedures. The first is a DNS of the fluid equations in order to
determine the fluid velocity fluctuations and the forcing that these fluctuations cause
in the particles. In this procedure, we use only the one-way coupling and neglect the
effect of forces exerted by the particles on the fluid turbulence. This is because the
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main focus of our study is to examine the effect of the fluid turbulence on the particle
fluctuations, and we are interested in examining whether a Langevin model with
random forcing can accurately capture the effect of fluid turbulence on the particle
phase. The DNS simulations are supplemented by ‘fluctuating force’ simulations in
Part 2 (Goswami & Kumaran 2010), where the force on the particles due to the fluid
velocity fluctuations are substituted by random white noise in the equations for the
particle motion. The random noise is assumed to be Gaussian and anisotropic, and
the second moments of the noise fluctuations are calculated from the turbulent fluid
velocity fluctuations in the DNS simulations.

The DNS simulation procedure and the code validation are discussed in the next
section. In § 3, we investigate the distribution of the particle inside the channel and
also the fluid velocities at the span wise plane of the channel. In § 4, we examine
the velocity distribution function for both the fluid velocity and the particle velocity.
While the fluid velocity is adequately approximated as a Gaussian distribution, it is
found that the particle velocity is very different from a Gaussian distribution. An
issue of importance is to examine the particle acceleration distribution due to the
fluid velocity fluctuations. In a Langevin model for the particle phase, the implicit
assumption is that the fluctuating force, and thereby the fluctuating acceleration, of
the particle due to fluid velocity fluctuations is a Gaussian distribution. Here, we
examine the acceleration distribution in detail to determine whether the acceleration
distribution function for the particles is a Gaussian distribution.

Table 1 shows the parameter values for which we have carried out the direct
numerical simulations. In all cases, we have fixed the Reynolds number based on the
channel width and wall velocity equal to 750, so that a fair comparison can be made
across different ratios of collision and viscous relaxation time. Since we are simulating
discrete particles across the entire channel using one-way coupling, the number of
particles in the discrete numerical simulations imposes a computational limitation. If
the number of particles is too large, the computation time increases significantly, and
so we have limited our simulations to a maximum of 8000 particles in the simulation
cell. This imposes a limitation on the ratio of the channel width to particle diameter at
fixed volume fraction, as shown in table 1. We have assumed that the particle diameter
is 39 μm for calculating the viscous relaxation time in order to make a connection to
real flows. This imposes a limitation on the channel thickness to about 4 mm, which
is rather small. It would be desirable to simulate a channel thickness of about 4 cm
in order to make the simulations relevant for real applications, but this would require
increasing the number of particles by a factor of 103, which would make it infeasible
to probe the large range of parameters we have been able to access, as shown in
table 1. The advantage of restricting the particle numbers is that we have been able
to obtain profiles for all the particle concentration, velocity and fluctuating velocity
across the entire channel over a range of parameters. The viscous relaxation time has
been varied independently by changing the mass density of the particles. The average
time between collisions has been obtained by counting the total number of collisions
in the simulation and dividing by the period of the simulation. Since the channel
width is small, particles sometimes travel from one wall to the other without colliding
with another particles. Therefore, we have also independently calculated the average
time between particle–particle collisions and particle–wall collisions independently.
The Stokes number in the present case is also reported as the ratio of the viscous
relaxation time of the particle to the integral time scale of the fluid. All length and
velocity scales are reported in dimensionless form, and they are non-dimensionalized
by the friction length and the friction velocity.
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Solid Relaxation Particle– Particle– Particle
No. of Particle volume time of particle wall Stokes
particles Simulation density fraction the particle collision collision number
(Np) runs (ρp) (φs) 2δ/d (τv) time (τcpp

) time (τcpw
) (St = τv/τf )

(a) Viscous relaxation time of the particle is less than the particle–particle
collision time (τv < τcpp

)
1 2500 223.2 760.5 294.5 4.1
2 3000 267.8 802.1 293.6 4.9

8000 3 4000 9.44 × 10−5 76.6 357.1 869.8 295.1 6.6
4 5000 446.4 998.0 300.2 8.2
5 6000 535.7 1022.5 306.7 9.9

(b) Viscous relaxation time of the particle is less than the particle–wall
collision time (τv < τcpw

)
6 4000 193.9 2404.2 416.7 3.6

4000 7 5000 1.9 × 10−5 103.97 242.4 2585.9 410.8 4.5
8 6000 290.8 2712.0 405.1 5.4
9 7000 339.3 2779.9 413.5 6.3

(c) Particle–particle collision time is less than the viscous relaxation time of
the particle (τcpp

< τv )
10 1500 509.3 340.9 244.5 9.4
11 2000 679.0 351.0 248.8 12.6
12 2500 848.8 386.3 255.4 15.7

8000 13 3000 7.0 × 10−4 39.3 1018.5 419.0 263.2 18.8
14 4000 1358.0 480.4 285.0 25.1
15 5000 1697.5 493.5 291.5 31.4
16 6000 2037.0 541.8 309.7 37.6

Table 1. Particle–particle and particle–wall collision time for particle with different relaxation
times and with different solid volume fractions, Re = 750, based on the half of the channel
width and the half of the difference between the velocities of the wall.

2. Direct numerical simulation
Direct numerical simulation is the technique for integrating full Navier–Stokes

equations that govern the fluid motion. The particles tracking is carried out in a
Lagrangian reference frame. In our study we use the solid, spherical particle with
much higher density than that of the carrier fluid. The particles diameter is larger
than the molecular mean free path, but the particles diameter could be smaller or
larger than the Kolmogorov scale.

The fluid phase is considered as the incompressible Newtonian fluid that satisfies
the Navier–Stokes equation for mass and momentum

∇ · u = 0, (2.1)

∂u
∂t

+ u · ∇u = − 1

ρf

∇p + ν∇2u, (2.2)

where u (x, t) represents a three-dimensional instantaneous velocity field, ρf is the
density of the fluid, p (x, t) is the pressure field and ν is the kinematic viscosity.
The velocity field satisfies the no-slip boundary conditions at the solid walls, and
the periodic boundary condition in the streamwise (x) and spanwise (z) directions as
shown in figure 1.

In our fluid flow equation we have not included the force exerted by the particles;
therefore, we only have one-way coupling of the fluid velocity fluctuations on the
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Figure 1. The flow geometry.

particle motion. In addition, the volume loading is O(10−4), and so we can neglect
the particle volume effect. However, the mass loading is (O ∼ 1), and the turbulence
field has been found to be modified (Li & McLaughlin 2001). We have neglected
this effect to focus our attention on the systematic study of the effect of turbulent
flow field on particle phase statistics using particle with different inertial properties
and compare the results with those obtained from stochastic simulations base on the
large-scale turbulent properties.

For the particle motion, we use a simple drag law of the type

dvi

dt
=

ui (xP i) − vi

τv

+
1

mp

∑
i �=j

Fij (2.3)

and
dxi

dt
= vi , (2.4)

where ui(xP i) is the interpolated fluid velocity at the particle centre, Fij is the force
due to the instantaneous collision. The approximations made in deriving this equation
are discussed a little later. When the particle Reynolds number is lower than unity,
the particle relaxation time is defined as

τv =
ρpd2

18μ
, (2.5)

where d is the particle diameter. If the particle Reynolds number is more than unity,
the corrected expression for τv is (Kumaran 2003)

τv =
ρpd2

18μ
(
1 + 0.15Re

2/3
p

) . (2.6)

In most of the cases we have studied, the fluid flow around the particle is adequately
described by the Stokes flow assumptions. Therefore, we have used the low-Reynolds-
number limit of the expression of τv to make it easier for theoretical comparison.
Equation (2.3) is obtained by simplifying the original particle equation of motion
described by Maxey & Riley (1983). Where particle equation of motion was described
by considering the force due to viscous and the pressure drag, fluid pressure gradient,
inertia of the virtual mass, Basset history term due to unsteady relative acceleration
and the buoyancy force. Maxey & Riley (1983) included the effect of spatial variations
on the carrier phase velocity in deriving the equation of motion. The assumptions
were that the particle is small compared with the length scale of the variations in the
undisturbed flow, and particle Reynolds number is small. These restrictions indicate
that MaxeyRiley particle equation of motion can be applied in the case of turbulent
flow field when the particle diameter is less than the Kolmogov length scale. Burton



Turbulent particle–gas suspensions. Part 1 67

& Eaton (2005) have described different numerical studies on the particle equation
of motion at moderate Reynolds number. Bagchi & Balachandar (2003) have shown
the dependence of the drag force on the strain. Because of the complexity of these
dependencies for simple straining flows and the lack of a suitable expression for a
turbulent flow, we use (2.3), which ignores the effect of strain on the drag force. In
this study, the density of the particle is much larger than the density of the fluid,
so the buoyancy term is small compared to the Stokes drag term. The Saffman lift
term is small compared with the Stokes drag term in most of the flow except the
viscous sublayer (McLaughlin 1989). Rouson & Eaton (2001) have found that the
lift increases the rate of particle accumulation but does not influence the velocity
statistics. Since this study is not concerned with the deposition phenomenon, we have
not considered the lift force. Armenio & Fiorotto (2001) has quantitatively described
the contribution of the different forces for wide range of density ratio of the dispersed
phase to the carrier fluid. They found that the effect of added mass is negligible
even for a density ratio as low as O(1). The drag due to fluid pressure gradient
is relevant only for density ratio O(1) and decreases very fast with increasing the
density ratio. It was found that when particle density is approximately 1000 times the
fluid density, as is the case in our study, the pressure drag is about 1 % and Basset
force is around 10 % of the Stokes drag force. Bagchi & Balachandar (2003) and
Kim, Elghobashi & Sirignano (1998) show that the history force is not significant in
simulations of freely translating particles. In cases where the particle diameter is of the
same magnitude as the Kolmogorov scale, the Faxen corrections due to the curvature
of the undisturbed velocity field are required to predict accurately the forces on the
particle. With increasing the particle diameter, the relative importance of the pressure
drag and Basset history term changes (Armenio & Fiorotto 2001). Because of the
lack of such description, here we have used the simplified equation (2.3) following
the earlier studies of Li & McLaughlin (2001), Rouson & Eaton (2001) and Kuerten
(2006).

2.1. Fluid velocity interpolation

To calculate the fluid drag on the particles, it is necessary to obtain the fluid
velocities at the particle centres. The fluid phase simulation gives us the Eulerian
velocities at the three-dimensional grid points on simulation domain. The inter-
particle collisions depend on the particle relative velocities, which are influenced
by the interpolated fluid velocities. Therefore, the accuracy of the interpolation
plays a significant role in the case of particle-laden flows. Yeung & Pope (1988)
and Balachandar & Maxey (1989) studied the accuracy of different interpolation
schemes such as Linear interpolation, Lagrangian interpolation, Hermit and cubic
spline interpolation and compared the results obtained by the direct summation of the
Fourier series, known as spectral interpolation. Their studies reveal that it is necessary
to have at least third-order spatial accuracy. Kontomaris, Hanratty & McLaughlin
(1992) studied the accuracy of interpolation schemes in the case of turbulent channel
flow. In case of the wall bounded flows, to capture the turbulent statistics the stretching
of the grids becomes unavoidable. In this case, Chebyshev polynomials are used in
the wall-normal direction. For this reason, Kontomaris et al. (1992) studied the mixed
schemes, such as Lagrangian–Chebyshev and Hermit–Chebyshev. In both the cases,
direct summation of the Chebyshev series was used for the interpolation in the wall-
normal direction. They found that the Hermit–Chebyshev interpolation is the most
accurate in case of turbulent channel flow. But in this method, it is necessary to store
the first and the second derivatives of the three-dimensional velocity field with respect
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to both the homogeneous directions, and this requires a large amount of memory.
The study of Sundaram & Collins (1996) demonstrated that the collision frequencies
do not depend much on the order of interpolation, though their study was restricted
within isotropic turbulence. Rauson & Eaton (1994) used linear interpolation for cost
effectiveness of the computation in case of the particulate turbulent channel flow.
They found insignificant effect of interpolation on mean particle velocities, but RMS
velocities were found to be underpredicted by 10 %. Considering both the accuracy
and the memory requirements, we have used the fifth-order Lagrangian–Chebyshev
interpolation scheme in our study.

Since we are using the pseudo-spectral method for computation, we can approximate
the physical space velocity field with the spectral coefficient as

u (x, y, z, t) =

Nx/2−1∑
l=−Nx/2

Nz/2−1∑
m=−Nz/2

Ny∑
n=0

ˆ̃u (l, n, m, t) e2πi[(lx/Lx )+(mz/Lz)]Tn

(y

δ

)
, (2.7)

where Nx , Ny + 1 and Nz are the number of grid points in the streamwise (x), wall-
normal (y), and spanwise (z) directions. Note that δ is the half of the width of the
Couette, Lx and Lz are the periodic box length in the x and z directions. After doing
the summation over l and m, we can obtain the velocity at any grid point on the
homogeneous (x–z) plane given by

u (x, y, z, t) =

Ny∑
n=0

û (x, n, z, t, ) Tn

(y

δ

)
. (2.8)

Summation of (2.8) is carried out for y value corresponding to the particle position at
36 grid points in the x–z plane surrounding the particle. The Lagrangian interpolation
of order 5 is done to get the velocities at the particle position.

The studies of Sommerfeld (1995) and Sundaram & Collins (1994a) have demons-
trated the importance of considering inter-particle collisions. In general, the collision
can be treated by deterministic as well as stochastic methods. Sundaram & Collins
(1996) used deterministic method for their isotropic suspension but Sommerfeld
treated the occurrence of collision by the local probability, which requires the particle
number density to be sufficiently high. In our work, we use the deterministic method
to predict the collision. Most of the computations regarding the update of particle
position and velocity are O(Np), where Np is the total number of particles in the
system. But, since in the case of collision detection we have to find out the colliding
particle pairs, the examination of Np(Np − 1)/2 particle-pairs is required. Therefore,
O(N2

p) operations are required. In turbulent flows, particle motions are influenced by
the time-dependent flow field of the carrier fluid. Consequently, it is not possible to
predict the collision over a long period of time. For this reason, we apply the concept
of molecular dynamic simulation in predicting collision time and colliding partner
in every time step. Here, we assume that the particle inertia is sufficient to allow
the particles to undergo hard sphere collision when the trajectories of the centre of
particles crosses at any instant of time, and we neglect the effect of lubrication forces
of the thin fluid layer in the contact regions of the particles. Here we consider only
the binary collisions because the probability of multiple simultaneous contacts in the
dilute suspension is negligible. To make the computation cost effective in finding the
colliding pair, the whole simulation domain is divided into three-dimensional lattice
cells. Then we find the collision time for each particle by choosing its partner from
the same cell or from the neighbouring cell by applying linked lists as described by
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Hoockney & Eastwood (1988). The saving of the computational costs are proportional
to the ratio of the cell volume examined for each particle to the total volume of
the system, considering the uniformity in the particle number density distribution.
To select the number of lattice cells in each direction, we ensure that the relative
displacement between two particles in a time �t does not exceed the cell dimension.
So if lXi is the cell length in the Xi direction, then the cell width is chosen by satisfying
the condition (vmax

ir �t/lXi < 1). Note that vmax
ir is the maximum relative velocity of a

pair of particles.
For a pair of particles, we find the collision time by solving

∣∣r ij
(
t + �tij

c

) ∣∣ =

∣∣∣∣r ij (t) + vij�tc +
1

2
aij�t2

c

∣∣∣∣ = d, (2.9)

where vij is the difference in the velocities of the particles i and j , (vij = vi − vj ) and
aij is the difference in acceleration, (aij = ai − aj ). Note that �tij

c is the collision time
of the colliding pair i and j . During the simulation, to include the particle–particle
collision we follow the proactive method as described by Sundaram & Collins (1996)
to avoid the underprediction of the collision frequency, which happens in retroactive
method, at the cost of higher computation time. Our collision prediction differs from
the previous authors (Li & McLaughlin 2001) in the addition of the instantaneous
particle acceleration term in collision equation, which in turn helps us to advance the
particles following the parabolic path on time in between the consecutive collisions.
Solving (2.9) and considering the minimum real positive root for each pair, we sort
out scheduled collision in ascending order. The pair that has minimum �tij

c will
collide first (where 0 � �tij

c � �t). So, we advance all the particles in positions and
velocities by the time �tij

c , and post-collision velocities of the particles which undergo
collision are calculated by

v′
i = vi − 1 + ε

2
(w · k) k,

v′
j = vj +

1 + ε

2
(w · k) k, (2.10)

where w = vi − vj , k is the unit vector along the line joining centres of the colliding
particles i and j , and ε is the normal coefficient of restitution. In this case, since we
are considering the elastic collision, ε is unity.

After time advancement, the particles occupy new positions in the fluctuation
velocity field of the carrier phase, the drag forces on the particles and the particle
acceleration are recalculated. Therefore, the updation of the collision schedule for all
the particles is required. At this point our algorithm also differs from the previous
authors. In our algorithm the motion of the particles is described by the following
steps:

(a) Calculation of the fluid forces on the particles and finding the accelerations.
(b) Finding the collision time and making the schedule in ascending order.
(c) Enacting the collision for the particle-pair with minimum �tij

c , if �tij
c � �t .

(d ) Updation of the particle position and recalculating the velocities and the
accelerations due to fluid forces.
At the time of scheduling the collision, we also consider the particle–wall collisions. In
calculating the time for particle–wall collisions, we consider those particles which are
in the lattice cells adjacent to the walls. Particle–particle and particle–wall collisions
also have been considered as elastic and frictionless, and no angular motion is
generated due to the inter-particle or particle–wall collision. This is because we are
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interested in studying the effect of fluid velocity fluctuations on the particle phase
distribution function. Particle rotations and the effect of friction on particle–particle
and particle–wall collisions can easily be introduced, since the particle positions and
velocities are being resolved explicitly. However, changes in the particle collision
laws would enlarge the parameter space (the restitution and friction coefficients for
particle–particle and particle–wall collisions have to be incorporated) and it could
complicate the quantitative comparison between the fluctuating force simulations and
the DNS simulations, and so we have used the simplest collision laws in the present
case. In previous studies of turbulent particle-laden flows, most of the previous authors
have neglected the rotational motion of the particle (Li & McLaughlin 2001; Rouson
& Eaton 2001; Kuerten 2006). Yamamoto et al. (2001) reported the LES of turbulent
gas–particle flow in a vertical channel considering rotational motion of the particle.
Currently, there is no experimental measurement of the coefficients of restitution and
friction for particles with size about 100 μm, though there have been studies for
larger particles. In the current analysis, we are also not studying the phenomena,
such as particle deposition, which could be significantly affected by the rotation-
induced lift (Yamamoto et al. 2001). Therefore, we neglect particle rotation in this
analysis.

We have considered here a turbulent Couette flow between two parallel plates, where
the plates are moving with equal velocities but in opposite directions. The origin of the
coordinate system is located on one of the walls as shown in figure 1. The x, y and z
axes are in the streamwise, wall-normal and spanwise directions, respectively. We have
used the primitive variable formulation and coupled method to solve the Navier–
Stokes equation using Kleiser–Schumann algorithm (Kleiser & Schumann 1980;
Canuto, Hussaini & Zang 1988). We have developed our code for a wall-bounded
two-phase flow based on the open source single-phase incompressible Navier–Stokes
solver (Gibson 2007). We start the simulation by putting the particles randomly in
the simulation box. The initial velocities of the particles are the interpolated fluid
velocities at the particle position. Initially, the simulation is run for the gas phase
without particles. When the gas phase simulation reaches a steady state, the particles
are introduced at random locations. The duration of each simulation is a few multiples
of the particle relaxation time to reach a steady state with respect to the particle
energy. Then, we start the sampling over a duration of 3–4 times the particle relaxation
time.

We have non-dimensionalized the variables based on the wall units. The units of
length and time are ν/u∗ and ν/u2

∗, where ν and u∗ are the kinematic viscosity and
the friction velocity of the particle-free carrier phase. The friction velocity is defined
as u∗ = (τw/ρ)1/2, where τw is the wall shear stress. The size of our computational
domain is 10πδ×2δ×4πδ, where δ is the channel half-width. The domain is discretized
into 120 × 55 × 90 grids in the x, y and z directions, with a wall-normal stretching to
capture the near wall physics of the flow. The resolution in wall units is 13.8 in the
streamwise direction and 7.4 in the spanwise direction. In the wall-normal direction,
it varied between 0.09 (near the wall) and 3.1 (at the centre). For all the simulations,
the carrier phase is air at ambient condition and the simulation is done at isothermal
condition for which kinematic viscosity is 1.4843 × 10−5 m2 s−1. In the results section,
all the variables are described in wall units unless explicitly mentioned. We have used
particles with different mass density to probe different ratios of viscous relaxation
and collision times; these will be provided in the results section. The fluid phase
Reynolds number is 750 based on the half of the channel width and the half of the
difference between the velocities of the wall. Based on the friction velocity, the fluid
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Figure 2. The mean velocity profile, a comparison with literature value: present simulation
(−−) and Kominnaho, Lundbladh & Johansson (1996) (�).

phase Reynolds number, Reτ = 52.7, wall velocity is 14.2 and the shear rate is 3.71.
The grid spacing in the streamwise direction is about 5–10 times the particle diameter,
whereas in the spanwise direction it is about 3–5 times the particle diameter. In the
wall-normal direction, variable grid spacing is used, with higher resolution near the
wall. The particle diameter is about 3–6 times the grid spacing at the wall, while it
is about 0.3–0.8 times the grid spacing at the centre. But, since we are considering
the centre of mass position of the particle as particle position to calculate the force,
neglecting the shear-induced lift and considering only the one-way coupling (i.e. no
particle effect on fluid phase), the particle statistics are not affected when the particle
diameter is larger than the grid spacing near the wall.

To validate the simulation code, we have compared our results of the single-
phase Couette flow with the literature. We have compared our results with those of
Kominnaho, Lundbladh & Johansson (1996). Figure 2 shows that the mean velocity
in the wall units is in agreement with the results of Kominnaho et al. (1996). Figure 3
shows the RMS velocity fluctuation in the streamwise, spanwise and wall-normal
directions. The small difference in the RMS velocities may be due to the smaller box
length compared with the case of Kominnaho et al. (1996). Figure 4 shows that the
variation of Reynolds stress in the wall-normal direction is also in good agreement
with previous results.

3. Particle distributions in the spanwise plane
First, we examine whether there exists any correlation in the fluid velocity and

particle density for the range of Reynolds and Stokes number we are interested
in. From the DNS, we find that for very low particle viscous relaxation time, the
particles form streaky structures in the near-wall region (figure 6a) similar to the
streaky structures we find in case of the fluid phase as shown in figure 5. But, at
higher τv , such structures vanish (figure 6b). Yamamoto et al. (2001) have reported
that in the presence of particle–particle collision near the wall, the streaky structure
is not observed even for St = 10, which is based on the particle relaxation time and
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the fluid time scale described by the ratio of half-channel width and the centreline
fluid velocity. They found that at the channel centre plane, the particles disperse more
uniformly with increasing Stokes number (St). The particles used for our simulations
are of much higher Stokes number than those used in the case of figure 6(a). The
Stokes number based on the ratio of half-channel width and the centreline fluid
velocity varies from 50 to 550, and there is no correlation between the particle
concentration and the structures in the fluid velocity field.
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Figure 6. Near-wall particle distribution in the x–z plane obtained from the direct numerical
simulation using particle having viscous relaxation time: (a) τv = 24.2 and (b) τv = 193.8.

4. Particle velocity and acceleration distributions
When the force on the particle is given by the Stokes drag law, the particle

acceleration a between two consecutive collisions can be written as

a =
u − v

τv

, (4.1)

where u is the instantaneous velocity of the fluid at the particle location and v is the
instantaneous particle velocity. The particle acceleration can be divided into a mean
and a fluctuating component. The instantaneous particle acceleration is given by

a = ā + a′, (4.2)

where the mean component is given by

ā =
ū − v̄

τv

, (4.3)

where v̄ is the average velocity of the particle at the particle location and ū is the mean
velocity of the fluid at the particle location. The fluctuating part of the acceleration
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on the particles is

a′ = a − ā =
u′ − v′

τv

, (4.4)

where u′ = u− ū is the fluctuating fluid velocity at the particle location, and v′ = v− v̄

is the fluctuating particle velocity at the particle location. In the following, we analyse
the probability distributions of u′ and v′ in the centre 20 % of the channel where the
mean velocity is close to a linear function of position, and the RMS of the particle
velocity fluctuations is nearly a constant.

There are three important time scales in the problem, which are the viscous
relaxation time for the particles τv , the time between particle collisions τc and the
correlation time for the fluid velocity fluctuations, which is the integral time τf . In
this analysis, we consider the case in which τf is small compared to the collision
and viscous relaxation time, so that the effect of fluid velocity fluctuations can
be modelled as Gaussian white noise. We consider the fluid and particle velocity
fluctuations for both cases τv < τc and τc < τv . There are also two different types of
collisions: particle–particle and particle–wall collisions in the Couette flow. Therefore
there are two distinct collision times for these two: the particle–particle collision
time (τcpp

), which is the average time taken by a particle between two consecutive
‘particle–particle’ collision; and the particle–wall collision time (τcpw

), which is the
time between successive collisions with the wall.

We examine the statistics in two distinct regimes: one at low volume fractions where
τv < τc and the other at larger volume fractions where τc < τv . In the case where
τv < τc, we have examined two cases. The first is at moderately low volume fractions,
where the particle relaxation time is small compared to the particle–particle collision
time, but particle–wall collision time is either smaller than or of the same magnitude
as the viscous relaxation time of the particle. This regime, where the particle collides
with the wall within a period comparable to the viscous relaxation time, is called
the free-flight regime, τv < τcpp

. The second is at very low volume fractions, where
the particle relaxation time is small compared to both the particle–particle and the
particle–wall collision times. In this case, particle relaxes before colliding with either
the other particles or the wall. Since in this case particle–wall collision time is smaller
than the particle–particle collision time, we designate the regime as τv < τcpw

, which
indicates that the relaxation time is also small compared with the particle–particle
collision time.

The statistics reported are the normalized particle velocity distribution and the
normalized particle acceleration distribution. In calculating the velocity distribution
function, we have considered the particle fluctuating velocity obtained by subtracting
the local particle-averaged velocity from the instantaneous particle velocity. Similarly,
the average acceleration, which is proportional to the difference between the mean fluid
and mean particle velocities, has been subtracted while calculating the acceleration
distribution function. Note that while calculating the acceleration distribution, we
have only included the local acceleration on the particles due to the effect of the fluid
velocity, and we have neglected the acceleration during a collision. This is because
the collision processes are already included in the collision integral in theories for
granular flows, and so they should not be incorporated in the random forcing due
to turbulent fluctuations. While reporting the distribution functions, we have also
presented the variance as a percentage of the mean value in the captions of the
corresponding figures. For calculating the variance, we have considered 20 ensembles
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Figure 7. Streamwise component of particle velocity distribution function (a) and acceleration
distribution function (b) at the centre core of the Couette, when the viscous relaxation time
of the particle is less than the particle–particle collision time,

(
τv < τcpp

)
and φ = 9.44 × 10−5.

Simulation run 2 (�); run 3 (∗); run 5 (�). Gaussian fits are: for run 2 (−.−), run 3 (—) and
run 5 (−−). In (a), statistical standard deviations in f (v′

x) are 5.2 %, 4.5 % and 3.5 % for run 2,
run 3 and run 5, respectively, corresponding to mean v′

x . In (b), statistical standard deviations
in f (a′

x) are 5.6 %, 4.8 % and 4.3 % for run 2, run 3 and run 5, respectively, corresponding to
mean a′

x . Parameters for each run are given in table 1.

of 1000 samples each and obtained the overall mean by averaging all the 20 000
samples. The variance is then calculated as the variance over the 20 different samples.

4.1. Viscous relaxation time less than collision time

In this subsection, we present the fluctuating particle velocity and acceleration
distribution function (PDF) for the case when the particle relaxation time is less
than the inter-particle collision time.

In the simulations, we have varied viscous relaxation time by changing the particle
density, subject to the condition τv < τc. First, we consider the case where the particle
relaxation time is less than the time between inter-particle collisions, but the particle–
wall collision time may be smaller or of the same magnitude as the relaxation time
of the particles. That is, we analyse the regime designated as τv < τcpp

, and τv ∼
or < τcpw

. The solid volume fraction (φ) is 9.4 × 10−5 for all the simulations in this
regime.

Figure 7(a) shows the normalized distribution function of the streamwise particle
velocity fluctuation at the homogeneous central region (the middle 20 %) of the
Couette, where the mean velocity is approximately a linear function of position and
the mean square velocities in the fluid are nearly constant. From the figure, it is clear
that the streamwise velocity distribution function is well fitted by a Gaussian function,
except in the high-velocity region where the PDF decreases below about 10−2. From
figure 7(a) it is observed that as τv increases, the distribution function becomes
more narrower, which indicates a decrease in the streamwise component of the
particle velocity fluctuations. Figure 7(b) shows the distribution of streamwise particle
acceleration for different viscous relaxation time. From the figure, it is clear that the
distribution function is Gaussian, and the standard deviation of particle acceleration
decreases with increasing viscous relaxation time. Interestingly, the variation in the
mean square of the particle velocity fluctuations is smaller than the variation in the
mean square of the particle acceleration fluctuations.

Figures 8(a) and 8(b) show the velocity and acceleration distribution functions
for the wall-normal component of the particle velocity. Unlike in the case of the
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Figure 8. Wall-normal component of particle velocity distribution function (a) and
acceleration distribution function (b) at the centre core of the Couette, when the viscous
relaxation time of the particle is less than the particle–particle collision time,

(
τv < τcpp

)
and

φ = 9.44 × 10−5. Simulation run 2 (�), run 3 (∗) and run 5 (�). Gaussian fits are: for run 2
(−.−), run 3 (—) and run 5 (−−). In (a), statistical standard deviations in f (v′

y) are 5.2 %,

4.6 % and 4.2 % for run 2, run 3 and run 5, respectively, corresponding to mean v′
y . In (b),

statistical standard deviations in f (a′
y) are 4.4 %, 4.3 % and 4.5 % for run 2, run 3 and run 5,

respectively, corresponding to mean a′
y . Parameters for each run are given in table 1.

streamwise component of the velocity distribution, the distribution of the wall-
normal velocity fluctuations is very different from a Gaussian, and it shows very little
variation with the viscous relaxation time of the particle. Strikingly, even when the
velocity distribution is very different from a Gaussian, the acceleration distribution
is actually very well described by a Gaussian distribution. This indicates that the
deviation from a Gaussian distribution for the velocity fluctuations is not due to a
change in the form of the acceleration on the particles, but rather due to inter-particle
collisions. It should be noted from figures 7 and 8 that the mean square velocities
and accelerations in the streamwise direction are significantly larger than those in the
cross-stream direction. The particle velocity fluctuations in the streamwise direction
induce collision between particles, and these collisions result in fluctuations in the wall-
normal and spanwise directions. These fluctuations result in the highly non-Gaussian
nature of the velocity fluctuations, even though the acceleration distribution is very
close to a Gaussian. Identical conclusions can be drawn regarding the velocity and
acceleration distributions in the spanwise direction from figures 9(a) and 9(b).

Next, we analyse a lower volume fraction where a particle collides with the wall
more frequently than with the other particles. We have τcpw


 τcpp
, and the viscous

relaxation time is small compared to the time for particle–wall collisions, τv < τcpw
. We

use a particle volume fraction (φ) of 1.9×10−5, which is nearly one order of magnitude
lower than that used in the previous subsection. Figure 10(a,b) shows the distribution
function of streamwise fluctuating velocity and streamwise acceleration for two
different values of the viscous relaxation time. As in the previous subsection, both the
velocity and the acceleration distributions are found to be Gaussian distributions in
the streamwise direction. Figures 11(a) and 11(b) show the distribution functions for
wall-normal velocity and acceleration, and figures 12(a) and 12(b) show velocity and
acceleration distributions in the spanwise directions. Figures 11(a) and 12(a) show
that the velocity distributions in the wall-normal and spanwise directions are very
different from Gaussian distributions. However, figures 11(b) and 12(b) show that
the acceleration distributions in both the wall-normal and spanwise directions are
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Figure 9. Spanwise component particle velocity distribution function (a) and acceleration
distribution function (b) at the centre core of the Couette. The viscous relaxation time of
the particle is less than the particle–particle collision time,

(
τv < τcpp

)
and φ = 9.44 × 10−5.

Simulation run 2 (�), run 3 (∗) and run 5 (�). Gaussian fits are: for run 2 (−.−), run 3 (—) and
run 5 (−−). In (a), statistical standard deviations in f (v′

z) are 5.1 %, 4.8 % and 4.1 % for run 2,
run 3 and run 5, respectively, corresponding to mean v′

z. In (b), statistical standard deviations
in f (a′

z) are 3.5 %, 4.6 % and 5.3 % for run 2, run 3 and run 5, respectively, corresponding to
mean a′

z. Parameters for each run are given in table 1.
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Figure 10. Streamwise component of particle velocity distribution function (a) and
acceleration distribution function (b) at the centre core of the Couette, when viscous relaxation
time of the particle is less than both the particle–particle and particle–wall collision times,(
τv < τcpw

)
and φ = 1.9 × 10−5. Simulation run 7 (�) and run 9 (∗). Gaussian fits are: for run

7 (—) and run 9 (−−). In (a), statistical standard deviations in f (v′
x) are 7.5 % and 5.9 % for

run 7 and run 9, respectively, corresponding to mean v′
x . In (b), statistical standard deviations

in f (a′
x) are 5.3 % and 4.5 % for run 7 and run 9, respectively, corresponding to mean a′

x .
Parameters for each run are given in table 1.

well-fitted Gaussian distribution up to two decades. The physical reason for this is the
same as that in the previous case τv < τcpp

. The acceleration and velocity fluctuations
in the streamwise direction are large compared with those in the wall-normal and
spanwise directions. Therefore, even though the viscous relaxation time is small
compared with the time between collisions, the collisions between particles induced
by fluctuations in the streamwise direction result in fluctuations in the wall-normal
and spanwise direction. This contribution results in a non-Gaussian form for the
velocity distribution, and the slow decay in the tails of the velocity distribution.



78 P. S. Goswami and V. Kumaran

10–2

10–3

10–1

100

f (
v′ y

)

(a)

0–2–4 2 4

v′x

10–1

101

100

102

f (
a

′ y)

(b)

a′y

0 0.01–0.01–0.02 0.02

Figure 11. Wall-normal component of particle velocity distribution function (a) and
acceleration distribution function (b) at the centre core of the Couette, when viscous relaxation
time of the particle is less than both the particle–particle and particle–wall collision times,(
τv < τcpw

)
and φ = 1.9 × 10−5. Simulation run 7 (�) and run 9 (∗). Gaussian fits are: for run

7 (—) and run 9 (−−). In (a), statistical standard deviations in f (vy) are 5.2 % and 5.9 % for
run 7 and run 9, respectively, corresponding to mean v′

y . In (b), statistical standard deviations
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Parameters for each run are given in table 1.
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Figure 12. Spanwise component of particle velocity distribution function (a) and acceleration
distribution function (b) at the centre core of the Couette, when viscous relaxation time of the
particle is less than both the particle–particle and particle–wall collision times,

(
τv < τcpw

)
and

φ = 1.9 × 10−5. Simulation run 7 (�) and run 9 (∗). Gaussian fits are: for run 7 (—) and run
9 (−−). In (a), statistical standard deviations in f (v′

z) are 6.5 % and 4.7 % for run 7 and run
9, respectively, corresponding to mean v′

z. In (b), statistical standard deviations in f (a′
z) are

6.8 % and 6.0 % for run 7 and run 9, respectively, corresponding to mean a′
z. Parameters for

each run are given in table 1.

One common feature observed in the regime where the viscous relaxation time is less
than the collision time is the highly non-Gaussian nature of the velocity distributions
in the wall-normal and the spanwise directions. In addition, the distributions seem
to be constructed by the superposition of two distinct distributions: one with a small
variance near the centre and the other with a larger variance in the relatively high-
velocity regions. This is because even though τv is less than τc in this regime, the
wall-normal and spanwise particle velocity fluctuations are affected by streamwise
velocity fluctuations through the inter-particle collision. This was tested by running
some simulations in which we switched off inter-particle collisions (let particles pass
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Figure 13. Particle velocity distribution functions at the centre core of the Couette for
streamwise (a), wall-normal (b) and spanwise components (c) of particle velocity fluctuations.
Viscous relaxation time of the particle is less than the particle–particle collision time,
φ = 9.44 × 10−5 and simulation run 2. The three different symbols show results of simulations
with collision and all the components of acceleration due to fluid velocity fluctuations (�),
without collision but with acceleration (∗), and with collision but without the spanwise and
wall-normal acceleration due to fluid velocity fluctuations (�). The parameters for run 2 are
given in table 1.

through each other), so that there is no wall-normal of spanwise velocity fluctuations
generated by inter-particle collisions, as shown in figure 13.

4.2. Collision time less than the viscous relaxation time (τc < τv)

In this section, we focus on the regime where the collision time (τc) is less than
the viscous relaxation time (τv) of the particles. In this case, the period of both the
particle–particle and particle–wall collisions is less than the particle relaxation time.
For all the simulations discussed in this section, the volume fraction of the particles
is φ = 7 × 10−4. In a similar way to the previous subsection, the density of the
particle has been changed to vary the relaxation time, keeping the diameter and
the particle loading constant. The increase in viscous relaxation time (τv) increases
the particle–particle collision time (τc) by reducing the mean square particle fluctuation
(granular temperature). But, in all the runs, we confined ourselves with the parameter
regime τc < τv . Figure 14(a,b) shows the streamwise velocity distribution function
and acceleration distribution function for different values of the viscous relaxation
time. Both the velocity and acceleration distributions are well fitted by a Gaussian
distribution, and there are deviations only when the distribution function is less
than 10−2. As τv increases, the standard deviation decreases, indicating a decrease
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Figure 14. Streamwise component of particle velocity distribution function (a) and
acceleration distribution function (b) at the centre core of the Couette when particle–particle
collision time is less than the viscous relaxation time of the particle,
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)
and

φ = 7.0 × 10−4. Simulation run 10 (�), run 13 (∗) and run 16 (�). Gaussian fits are: for
run 10 (−.−), run 13 (—) and run 16 (−−). In (a) statistical standard deviations in f (v′

x) are
7.1 %, 5.4 % and 5.0 % for run 10, run 13, and run 16, respectively, corresponding to mean
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x . In (b), statistical standard deviations in f (a′
x) are 5.9 %, 5.5 % and 6.1 % for run 10, run
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table 1.
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Figure 15. Wall-normal component of particle velocity distribution function (a) and
acceleration distribution function (b) at the centre core of the Couette when particle–particle
collision time is less than the viscous relaxation time of the particle,

(
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)
and

φ = 7.0 × 10−4. Simulation run 10 (�), run 13 (∗) and run 16 (�). Gaussian fits are: for
run 10 (−.−), run 13 (—) and run 16 (−−). In (a) statistical standard deviations in f (v′

y) are
4.5 %, 3.5 % and 2.7 % for run 10, run 13 and run 16, respectively, corresponding to mean
v′

y . In (b), statistical standard deviations in f (a′
y) are 5.0 %, 4.4 % and 5.6 % for run 10, run

13 and run 16, respectively, corresponding to mean a′
y . Parameters for each run are given in

table 1.

in the intensity of the streamwise particle velocity and acceleration. However, it is
observed that the variation in the acceleration fluctuation is larger than that in
the velocity fluctuations. Figure 15(a,b) and figure 16(a,b) show the wall-normal
and spanwise velocity and acceleration distribution function, respectively. As in all
previous cases, we observe that the acceleration distribution is well described by a
Gaussian distribution. However, we find here that the particle velocity distributions
are also well approximated by a Gaussian distribution, in contrast to the regime
τv < τc analysed in the previous subsection. In addition, the velocity distributions



Turbulent particle–gas suspensions. Part 1 81

10–3

10–2

10–1

100

f (
v′ z

)
(a)

0–2 –1–3 321

v′z

10–1

101

100

102

f (
a

′ z)

(b)

a′z

0 0.005–0.005–0.010 0.010

Figure 16. Spanwise component of particle velocity distribution function (a) and acceleration
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time is less than the viscous relaxation time of the particle,

(
τcpp

< τv

)
and φ = 7.0 × 10−4.
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are more isotropic, with the RMS velocity in the streamwise direction only about
25 % larger than the RMS velocity in the wall-normal and spanwise directions. (This
is in contrast to the results in the previous two subsections for τv < τc, where the
RMS velocity in the wall-normal and spanwise directions are lower than those in
the streamwise direction by a factor of 3.) This is because in the present case, the
time between collisions is small compared with the viscous relaxation time, and so
collisions have a strong randomizing effect on the velocity fluctuations. This results
in a greater collisional redistribution of energy between the streamwise and the other
two directions, and also results in a near-Gaussian velocity distribution.

4.3. Components of particle acceleration

One of the major conclusions from the previous two subsections is that the particle
acceleration distribution is close to a Gaussian distribution, even when the particle
velocity distribution is very different from a Gaussian. In this subsection, we analyse
the different components of the acceleration distribution on the particles in detail.
The particle acceleration distribution can be divided into two parts: the first is due
to fluid velocity fluctuations, (u′/τv) and the second is due to the particle velocity
fluctuations, (v′/τv), as shown in (4.4). We examine the distributions for each of these
two separately.

Figures 17 and 18 show the PDF for the acceleration due to the fluid velocity
fluctuation and the particle velocity fluctuation for the case τv < τc, while figure 19
shows the acceleration distribution for τc < τv . In the regime τv < τc, it is observed
that in the streamwise direction, the accelerations due to both the fluid velocity
fluctuations and the particle velocity fluctuations are of the same magnitude, and
both fluctuations are Gaussian functions. Therefore, the total acceleration is well
approximated by a Gaussian function. In the wall-normal and spanwise directions,
however, the acceleration due to the fluid velocity fluctuations is close to a Gaussian,
while the acceleration due to the particle velocity distributions is very different from a
Gaussian. However, the acceleration due to the particle velocity fluctuations is small
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Figure 17. (a) Streamwise, (b) wall-normal and (c) spanwise components of particle
acceleration distribution function at the homogeneous centre core of the Couette, calculated
from the particle acceleration fluctuation, fluid velocity fluctuation and the particle velocity
fluctuation. Viscous relaxation time of the particle is less than the particle–particle collision
time,

(
τv < τcpp

)
and φ = 9.44 × 10−5, and simulation run 2. f (a′

i) (�), f (u′
i/τv) at particle

positions (∗), f (v′
i/τv) (�), and f (u′

i/τv) at the fluid grid points (×). The Gaussian fits are f (a′
i)

(−.−), f (u′
i/τv) (—), f (v′

i/τv) (−−), and f (u′
i/τv) at the fluid grid points ( · s). Parameters for

run 2 are given in table 1.

compared with that due to the fluid velocity fluctuations, and the PDF for the total
acceleration is close to the PDF for the acceleration due to fluid velocity fluctuations.
Therefore, the total acceleration can be well approximated as a Gaussian function
due to the fluid velocity fluctuations alone.

Figure 19 shows the PDF for the acceleration distribution for the case where the
time between collisions is small compared with the viscous relaxation time. In this
case, we observe that the acceleration distribution function is a Gaussian function
in all three directions. In addition, the component of the acceleration fluctuations
due to the particle velocity fluctuations is small in all three directions, and the total
acceleration is very close to the acceleration due to the fluid velocity fluctuations. In
addition, the RMS of the acceleration in the streamwise direction is only about 30 %
larger than that in the wall-normal and spanwise directions. This is in contrast to the
case τv < τc, where it was observed that the RMS of the acceleration fluctuations in
the streamwise direction is about three times larger than that in the spanwise and
wall-normal directions.

Another important distribution plotted in figures 17–19 is the distribution of the
quantity (u′/τv) in the fluid. While plotting the different components of the acceleration
distributions, we measured acceleration due to the fluid velocity fluctuations, (u′/τv)
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Figure 18. (a) Streamwise, (b) wall-normal and (c) spanwise components of particle
acceleration distribution function at the homogeneous centre core of the Couette, calculated
from the particle acceleration fluctuation, fluid velocity fluctuation and the particle velocity
fluctuation. Viscous relaxation time of the particle is less than the both the particle–particle
and particle–wall collision times,
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and the acceleration due to the particle velocity fluctuations, (v′/τv), at the particle
location. Independently, we also measured the distribution of (u′/τv) in the fluid
itself, and the distribution of this is also shown in figures 17–19. It is observed that
there is very good agreement between the distributions for (u′/τv) at the particle
positions and that in the fluid. This implies that no correlation between the particle
and fluid velocities at the Stokes numbers, considered here. This results in a significant
simplification in the modelling of these flows, because the acceleration distribution
function can be quite easily calculated from the distribution of the fluid fluctuating
velocities.

4.4. Acceleration time correlation function

The time correlation of the particle acceleration is another issue of interest in the
modelling of the effect of turbulent fluctuations on the particle phase. In the present
study, the time correlation function of the particle acceleration has been computed and
compared with the time correlation for the fluid velocity fluctuations. The acceleration
correlation coefficient is given by

Raa (τ ) =
〈a′(t) · a′ (t + τ )〉

〈a′(t) · a′(t)〉 . (4.5)
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Figure 19. (a) Streamwise, (b) wall-normal and (c) spanwise components of particle
acceleration distribution function at the homogeneous centre core of the Couette, calculated
from the particle acceleration fluctuation, fluid velocity fluctuation and the particle velocity
fluctuation. Particle–particle collision time is less than the viscous relaxation time of the
particle,

(
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)
, φ = 7 × 10−4, and simulation run 13. f (u′

i/τv) at particle positions (∗),
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i/τv) (�), and f (u′
i/τv) at the fluid grid points (×). The Gaussian fits are f (a′

i) (−.−),
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i/τv) (—), f (v′
i/τv) (−−), and for f (u′

i/τv) at the fluid grid points ( · s). Parameters for run
13 are given in table 1.

Here, the acceleration at different times has been calculated in a reference frame
moving with local average particle velocity, and the angular brackets in the above
equation represent an average over a large number of particles. The fluctuation of the
acceleration has been calculated by subtracting the local average of the acceleration
from instantaneous acceleration of the particle. During the simulation, we consider
only particles that are located in the central 20 % of the channel, where the mean
square of the fluid velocity fluctuations is nearly constant. If a particle moves out
of the central region due to its transverse motion, this particle is rejected in the
correlation calculation. For each ensemble, we have considered the trajectories of
at least 200 particles. When the particle number becomes less than 200, we stop
the sampling. Averaging is carried out over 10 such ensembles (2000 particles) to
determine the decorrelation time.

Figure 20(a) shows the acceleration correlation coefficient as a function of time
for the case in which the particle relaxation time is less than the particle–particle
collision time. The time integral of the correlation coefficient gives the particle-
acceleration decorrelation time in a Lagrangian reference frame moving with the
particles. The average decorrelation time and the error estimate are determined by
calculating the correlation function starting at different initial times. Averages were
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Figure 20. Particle acceleration correlation at the centre core of the Couette. The different
components of the correlation are Ra′
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relaxation time of the particle is less than the particle–particle collision time, φ = 9.44 × 10−5

and simulation run 2; (b) viscous relaxation time of the particle is less than both the
particle-particle and particle–wall collision times, φ = 1.9×10−5, simulation run 7; (c) particle–
particle collision time is less than the viscous relaxation time of the particle, φ = 7 × 10−4,
simulation run 11. Parameters for all the runs are given in table 1.

obtained over 10 such ensembles to get the average decorrelation time of the particle.
Here, we have reduced the statistical error on averaging the decorrelation time
rather than the correlation function, since the time interval for sampling the particle
acceleration changes from one ensemble to the other. The acceleration correlation
time is evaluated in order to determine whether this time scale corresponds to the
fluid velocity correlation time. For particles with relaxation time large compared
with the fluid integral time scale, where the particle velocity fluctuations are much
lower than the fluid velocity fluctuations, the acceleration decorrelation time for the
particle will be of the same order as that of the fluid phase velocity decorrelation
time in the Eulerian reference frame. Alternatively, if the acceleration correlation time
is large compared with the particle viscous relaxation or collision times, it implies
that there is a significant contribution to the acceleration due to the particle velocity
fluctuations.

In figure 20, it is observed that spanwise and wall-normal components of correlation
decays much more faster than the streamwise components. It is necessary to be careful
while calculating the fluid velocity correlation time in a periodic box with mean flow,
since the turbulent structures leaving the box along the flow direction re-enter from
the opposite side. Because of this, there are correlations between the central cell and
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Particle acceleration decorrelation time Fluid velocity decorrelation time

Flow regimes τ a
px τ a

py τ a
pz τf x τfy τf z

τv < τcpp
77.9 (6.0) 12.6 (8.2) 38.9 (12.1)

τv < τcpw
87.4 (7.2) 20.3 (10.0) 34.5 (15.0) 54.1 (7.1) 16.7 (8.0) 19.6 (7.6)

τcpp
< τv 48.8 (5.2) 17.6 (7.0) 28.2 (10.3)

Table 2. Particle acceleration decorrelation times and fluid velocity time scales for three
different regimes. The quantities in parentheses indicate % standard deviations.

its images. These are artefacts of the simulation technique which are not present in
an infinite channel. In order to avoid these artefacts, we apply an upper limit in the
integration of the correlation coefficients t+ = 232.86, which is about 6 times the
value at which the correlation function decays to e−1/2 in the simulations. Choi, Yeo
& Lee (2004), in their calculation of the Lagrangian time scale of the fluid particle
in a turbulent channel, used an upper limit which is 8 times the value at which the
correlation function decays to e−1/2. The acceleration decorrelation time we obtain by
integrating the correlation coefficient is the time at which the correlation coefficient
reduces to e−1 (Squires & Eaton 1991a). If we increase the upper limit by 1.5 times,
the maximum variation of the time scale obtained from the integration will be around
17 %. The acceleration correlation times of the particle and the correlation time for
the fluid fluctuating velocities are shown in table 2. For calculation of the correlation
coefficient for the fluid velocity fluctuation, we have used a box of higher periodic
length, 28πδ ×2δ ×8πδ, and used t+ = 600 as the upper cutoff. We have also reported
the error estimate based on the standard deviation over 10 ensembles, sampled from
the different time regime of the direct simulation in table 2.

Figures 20(b) and 20(c) show the decay of the acceleration correlation when viscous
relaxation time of the particle is less than both the particle–particle and particle–wall
collision times and for the case when particle–particle collision time is less than the
particle relaxation time. As discussed earlier, cross-stream and spanwise components
decay much faster than the streamwise one. The acceleration decorrelation times are
reported in table 2.

From the above results, it is clear that for all the ratios of the collision time and
the viscous relaxation time considered here, the acceleration correlation time is the
largest in the streamwise direction, while it is lower in the wall-normal and spanwise
directions. The acceleration correlation time does not show much variation when
the ratio of the viscous relaxation time and collision time is changed, and it is of
the same order of magnitude as the Eulerian velocity autocorrelation time (integral
time), which is obtained by averaging over the central 20 % of the channel. More
importantly, this acceleration correlation time is much smaller than both the viscous
relaxation time and the time between collisions for the Reynolds numbers and the
Stokes numbers considered here. This implies that the acceleration on the particles
due to the fluid velocity fluctuations can be well represented by a Gaussian white
noise, over time scales comparable to the viscous relaxation time or the collision time.
However, it should be noted that the noise has to be highly anisotropic, since the
magnitude of the fluid velocity fluctuations in the flow direction is significantly larger
than that in the cross-stream and the spanwise directions.
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5. Conclusions
In the present study, we have analysed in detail the particle velocity and the particle

acceleration distributions using direct numerical simulations for different ratios of the
viscous relaxation time and the collision time for the particles. The particle Stokes
number is high enough that the correlation time for the fluid velocity fluctuations
(integral time) is always much smaller than the viscous relaxation time of the
particles and the particle collision time. The important conclusions of the analysis are
as follows.

(a) The distributions of the particle velocities and the acceleration on the particles
were measured using direct numerical simulations. For the case in which the viscous
relaxation time is small compared to the time between collisions (τv < τc), the
distribution of particle velocities is highly anisotropic, and the mean square velocity
in the flow direction is significantly larger than that in the wall-normal and spanwise
directions.

(b) The velocity distribution function for the particles in the streamwise direction
is close to a Gaussian for τv < τc, but the distributions in the spanwise and wall-
normal directions are significantly different from Gaussian distributions and exhibit
high-velocity tails.

(c) Even though the velocity distributions in the wall-normal and spanwise
directions are not Gaussian distributions, the acceleration distribution function in all
three directions are very well fitted by Gaussian distributions for (τv < τc). Therefore,
the total acceleration on the particles due to fluid drag can be well represented by a
Gaussian distribution, though this distribution is highly anisotropic.

(d) The velocity distributions in the wall-normal and spanwise directions for
(τv < τc) show two distinct regimes: the first fast decay at small velocity and the
subsequent slow decay at relatively large velocity. The former is recovered even in
simulations where particle collisions are not implemented, indicating that the fast
decay is due to the fluid velocity fluctuations. The slow decay at large velocity is
due to the effect of inter-particle collisions, which can be understood as follows.
The velocity distribution function of the particles is highly anisotropic, and the
RMS velocity in the flow direction is much larger than that in the wall-normal and
spanwise directions. Therefore, collisions are primarily driven by the difference in the
velocities of particles in the flow direction, which then deflect the particle velocity in
the spanwise and wall-normal directions.

(e) In the limit τc < τv , it was observed that both the velocity distributions and
the acceleration distributions in the three directions are well approximated by
Gaussian distributions. In addition, the distributions become more isotropic due to
the randomizing effect of particle collisions, and the variation in the RMS velocities
in the three directions is less than 30 %.

(f) The different components of the acceleration distribution, due to the fluid
fluctuating velocity and the particle fluctuating velocity, were analysed in detail. For
τv < τc, it was found that both components were of equal magnitude in the streamwise
direction, but for the spanwise and wall-normal directions the component due to the
fluid velocity fluctuations was much larger than that due to the particle velocity
fluctuations.

(g) Another interesting result was a comparison of the distribution of the
acceleration on a particle due to the fluid velocity fluctuation at the particle position,
and the distribution of the ratio of fluid velocity fluctuation to the viscous relaxation
time in the fluid. The comparison showed that these two distributions are almost
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identical, indicating that the fluid velocity fluctuations are not correlated over time
scales comparable to the relaxation time of a particle. This result is important because
it indicates that in order to model the fluctuating force on the particle, it is sufficient
to obtain the variance of the force distribution from the variance of the fluid velocity
distribution function.

(h) Finally, the correlation time for the acceleration correlations was calculated
along the trajectory of a particle. The correlation time was found to be of the same
magnitude as the correlation time for the fluid velocity in an Eulerian reference frame,
and much smaller than the viscous relaxation time and the time between collisions of
the particles.

All of the above results indicate that the effect of fluid velocity fluctuations on the
particle phase (for one-way coupling) can be well approximated by an anisotropic
Gaussian white noise. In Part 2 (Goswami & Kumaran 2010), we develop a Langevin
model for representing the fluid fluctuations in a particle simulation and examine how
the results of the simulation compare with the results of direct numerical simulations
where the particles and fluid are explicitly represented.

The authors would like to thank the Department of Science and Technology,
Government of India, for financial support.
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