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A fluctuating-force model is developed for representing the effect of the turbulent
fluid velocity fluctuations on the particle phase in a turbulent gas–solid suspension in
the limit of high Stokes number, where the particle relaxation time is large compared
with the correlation time for the fluid velocity fluctuations. In the model, a fluctuating
force is incorporated in the equation of motion for the particles, and the force
distribution is assumed to be an anisotropic Gaussian white noise. It is shown that
this is equivalent to incorporating a diffusion term in the Boltzmann equation for
the particle velocity distribution functions. The variance of the force distribution,
or equivalently the diffusion coefficient in the Boltzmann equation, is related to the
time correlation functions for the fluid velocity fluctuations. The fluctuating-force
model is applied to the specific case of a Couette flow of a turbulent particle–gas
suspension, for which both the fluid and particle velocity distributions were evaluated
using direct numerical simulations by Goswami & Kumaran (2010). It is found that
the fluctuating-force simulation is able to quantitatively predict the concentration,
mean velocity profiles and the mean square velocities, both at relatively low volume
fractions, where the viscous relaxation time is small compared with the time between
collisions, and at higher volume fractions, where the time between collisions is small
compared with the viscous relaxation time. The simulations are also able to predict
the velocity distributions in the centre of the Couette, even in cases in which the
velocity distribution is very different from a Gaussian distribution.

1. Introduction
In the modelling of particulate phase of gas–solid suspensions with relatively large

particles (i.e. of size greater than about 100 μm), it is necessary to deal with two
complexities. The first is the complexity of the turbulent flow of the gas and the effect
of the turbulent velocity fluctuations on the motion of particles. The second is the
inertia of the particles themselves and the inter-particle interactions. If the particles
are of relatively small size (1–3 μm), the particle Stokes number (ratio of particle
inertia and fluid viscosity) is small. This implies that the particle relaxation time is
small compared to the flow time scale, and so the the particles follow the motion
of the local fluid streamlines. For larger particles of size about 100 μm, the particle
Stokes number is large, though the Reynolds number (ratio of fluid inertia and
viscosity) is relatively small, up to about 10. This implies that the drag force on the
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particles is well approximated by the Stokes law or a modification of the Stokes law
because of particle inertia. However, the high particle Stokes number implies that
particles travel across streamlines because of their inertia and exert a force on the
fluid. In addition, it is also necessary to incorporate, realistically, the direct collisional
interactions between particles.

In the absence of significant fluid drag, the inertial flows of particles of size 100 μm
and higher has been extensively studied in the context of granular flows. There has
been much work on the derivation of constitutive relations for granular materials.
Kinetic theory approaches make an analogy between the motion of the particles in a
granular material and the motion of molecules in a gas and attempt to write down
constitutive relations similar to those derived by the Chapman–Enskog procedure for
hard-sphere gases (Chapman & Cowling 1970). There have been many formulations
of the balance laws and constitutive relations for smooth inelastic particles (Savage &
Jeffrey 1981; Jenkins & Savage 1983; Lun et al. 1984; Jenkins & Richman 1985). These
models typically fall into two categories: the generalized Navier–Stokes equations,
where the mass and momentum equations are similar to those for a simple fluid
but where the energy equation has an additional term because of the dissipation of
energy in inelastic collisions (Savage & Jeffrey 1981; Jenkins & Savage 1983; Lun
et al. 1984; Sela, Goldhirsch & Noskowicz 1996; Sela & Goldhirsch 1998), and the
moment expansion models (Jenkins & Richman 1985; Chou & Richman 1998), where
the higher moments of the velocity distribution function are incorporated into the
description. There have been derivations of kinetic equations up to Burnett order
starting from the Boltzmann equation using an expansion with the Knudsen number
and the inelasticity of the particle collisions as the small parameters (Sela et al.
1996; Sela & Goldhirsch 1998). A recent review (Goldhirsch 2003) concluded that
hydrodynamic models have been unusually successful in describing rapid granular
flows even though there is not a large-scale separation between the microscopic scale
(particle diameter or mean free path) and the flow scales.

There has been less work on the effect of fluid velocity fluctuations on the flow of a
granular material. Louge, Mastorakos & Jenkins (1991) studied the effect of particle
collision in the turbulent suspension of a vertical pipe and considered the particulate
phase as heavy dilute colliding grains, where the fluid exerts a drag force on the
particles. In their case the source of particle fluctuation is inter-particle collision and
not turbulent fluid velocity fluctuation. The effect of fluid drag on a particle–gas
suspension has been studied for the case in which turbulent velocity fluctuations are
not present for particles settling in a fluid (Kumaran & Koch 1993a , b) and for a
shear flow (Tsao & Koch 1995). In addition, the effect of hydrodynamic interactions
on the particle motion has been examined (Koch 1990). Kumaran (1998b) investigated
the temperature scaling of the vibro-fluidized granular material in the limit in which
the dissipation of energy because of inelastic collision or because of viscous drag
between successive collisions is small compared with the energy of the particles and
used the Boltzmann equation for the system which is identical to that for a gas
at equilibrium in a gravitational field. Furthermore, Kumaran (1998a) introduced
the correction to the distribution function because of dissipative effects, which was
calculated using the moment expansion method. He found that the corrected density
and temperature show qualitative agreement with the experimental results. In addition,
Kumaran (2004) developed the constitutive relation for the granular flow of smooth,
nearly elastic particles in the adiabatic limit, where the length scale for conduction is
small compared with the macroscopic scale. He performed the linear stability analysis
to investigate whether the Navier–Stokes approximation is capable of capturing
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the leading behaviour of the growth rate in the small-wavenumber limit. Kumaran
(2006a) also derived the constitutive relations for the granular flow of rough spheres
in the limit in which the energy dissipation in a collision is small compared with the
energy of a particle, using the perturbation expansion of the Boltzmann equation.
He found the non-zero coefficient of bulk viscosity for rough and partially rough
particles. The hydrodynamics of the dense granular flow of rough inelastic particles
down an inclined plane was analysed by Kumaran (2008) using constitutive relations
derived from kinetic theory. He introduced a fundamental length scale, ‘conduction
length’, over which the rate of conduction of energy is comparable to the rate of
dissipation. The effect of turbulent velocity fluctuations has been incorporated within
the kinetic theory framework (Kumaran 2003) with the assumption that the effect of
fluid velocity fluctuations can be modelled as Gaussian white noise, and the effect of
these fluctuations on the stability of the linear shear flow of a granular material has
been analysed. Here, we formulate a fluctuating-force description, where the effect
of the fluid velocity fluctuations is incorporated as a Gaussian white noise on the
particles. The noise statistics are obtained from the statistics of the fluid velocity
fluctuations in the direct numerical simulation (DNS) by Goswami & Kumaran
(2010). It was shown in part 1 that the statistics of the acceleration distribution on
the particles is identical to that obtained from the fluid velocity fluctuations within
the fluid. Therefore, we use the fluid velocity fluctuations in the absence of particles in
the DNS to extract the force correlations in the fluctuating-force model. The results
of the fluctuating-force model are then compared with the results of the DNSs with
one-way coupling.

2. Theory
2.1. Fokker–Plank description

The Boltzmann equation for the particle velocity distribution function, for a two-
dimensional flow with velocity in the x direction and velocity gradient in the y

direction, can be expressed as
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where f (v′) is the particle velocity distribution function, defined such that f (v′) dv′ is
the probability of finding a particle in the volume dv′ about v′ in the velocity space.
Here, it is important to note that v′ is the particle fluctuating velocity. The particle
instantaneous velocity is v′

i + v̄i , where v̄i(y) is the mean velocity in the streamwise
direction, which is a function of the cross-stream coordinate y. The first term on the
left-hand side of the (2.1) is the rate of change of distribution function with time;
the second term is the rate of change of the distribution function because of particle
motion; and the third term is the change in the distribution function because of mean
shear on the particles, where γ̇ =dv̄/dy is the mean strain rate. The fourth term
represents the effect of drag force on the particles, where τv is the viscous relaxation
time of the particle. The fifth term is the change in distribution function because
of fluctuating gas velocity modelled as Gaussian random noise. The term on the
right-hand side of (2.1) is the rate of change of the distribution function because of
particle collisions and is called the ‘collision integral’. The collision integral can be
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expressed as
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In (2.2) v′
b and v

′∗
b are the velocities of the pair of particles before the collision and v′

and v
′∗ are the post-collisional velocities; k is the unit vector in the direction of the

line joining centres of the colliding particles; w = v′ − v
′∗ is the difference in velocity

of the particles; χ(φ) is the pair distribution function, which is 1 in the limit of low
volume fractions analysed here. The integral in (2.2) is carried out for the condition
w · k � 0, so that the particles approach each other before the collision.

In a discrete particle simulation (event-driven simulations for example), the collision
term is explicitly modelled in the form of instantaneous collisions between particles.
The effect of the mean shear is also explicitly included because of the variation of the
particle mean velocity with position. Therefore, it is necessary to modify the rules for
particle advancement between collisions in order to include the effect of the random
noise (representing the diffusivity in (2.1)) and the particle drag (which is the fourth
term on the left-hand side of (2.1)). If the mean shear and collisions are neglected,
then the Boltzmann equation (2.1) reduces to
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Equation (2.3) is equivalent to the Fokker–Planck equation, with the coefficient of
diffusion in velocity space, Dij , given by
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Here a′ is the acceleration fluctuation, which is equal to (u′/τv) if we only consider the
acceleration because of the fluid velocity fluctuations and assume Stokes law. In (2.4),
the implicit assumption is that the decay time for the fluid velocity fluctuations is
small compared with the viscous relaxation time or the collision time, so that the effect
of fluid velocity fluctuations can be accurately represented by Gaussian white noise.
The diffusion tensor Dij is a symmetric tensor and has dimensions of (length2 time−3).
When the fluid is driven by the shear in the x–y plane, the components Dxz and
Dyz are zero because the probability distribution for the velocity fluctuation in the z
direction is an even function of u′

z.
The Langevin equation for a single particle, equivalent to (2.3), can be written as

dv

dt
= − (v − ū)

τv

+ F(t). (2.5)

The first term on the right-hand side of (2.5) is the drag of the particle because of
the difference in the particle velocity and the fluid mean velocity. The second term is
the fluctuating random force on the particle because of the fluid velocity fluctuations.
The force F(t) is modelled as Gaussian white noise with zero mean and a second
moment given by

〈Fi(t)Fj (t)〉 = 2Dij δ(t − t ′), (2.6)

where Dij is the diffusion coefficient, described in (2.3) and (3.1). It can easily be
verified that with the second moments given in (2.6), the Langevin equation (2.5)
is identical to the Fokker–Planck equation (2.3) for a homogeneous system. In the
absence of collisions and mean shear, the particle and fluid phase mean velocities
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are equal, since there is no net force acting on the particles. The solution for (2.3) or
(2.5), with a force correlation given by (2.6), is a Gaussian distribution for the particle
velocities, of the form

f =
1

(2π)3/2Det(Tij )1/2
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−
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−1
ij v′

j

2

)
, (2.7)

where the ‘temperature’ tensor of the mean square velocities, Tij , is

Tij = τvDij . (2.8)

In the presence of a mean shear and particle collisions, the Langevin equation (2.5)
still applies between successive particle collisions, provided we use the local mean
velocity of the particle in the drag term.

Therefore, the equation for particle motion between collisions is modified as,

dvi

dt
= −vi − ūi(xp)

τv

+ Fi(t). (2.9)

where ūi(xp) is the mean velocity at the local particle position. This is combined with
instantaneous collisions when two particles come in contact using the collision laws
for spherical elastic particles, to obtain a ‘fluctuating-force’ simulation procedure for
the particle phase.

The value of the random force F has to be chosen with care so that it is in
agreement with the second-moment equation (2.6). We consider a small time period
Δt , for which the differential equation (2.9) can be approximated as a difference
equation,

vi(t + Δt) − vi(t) = − (vi − ūi)Δt
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+ FiΔt (2.10)

where Fi is a stochastic force which has to be generated in accordance with (2.6).
The force magnitudes cannot be generated in the usual manner used for isotropic
Gaussian noise because the off-diagonal component Dxy of the diffusion matrix in
(2.6) is non-zero. The magnitude of the force is determined by generating three
independent normal random deviates, namely ζ1, ζ2 and ζ3, with zero mean and unit
variance. The components of the force, Fi , are then expressed as
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(2.11)

It can be easily verified that the above choice provides the correct second moment
of the force distribution as required in (2.6), appropriate for a finite-difference
formulation, with δ(t − t ′) replaced by (1/Δt).

In case a collision occurs within the time of advance Δt , the particle velocity
is changed in accordance with the collision rule, but the particle acceleration is
unchanged for the entire time period Δt . At every time step, the particle acceleration
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Figure 1. Eulerian time correlation of the streamwise fluid velocity fluctuation at different
cross-stream positions: y+ = 2.2 (−.−), y+=26.4 (−−), y+ = 46.8 (—) for (a) streamwise fluid
velocity fluctuation, (b) wall-normal fluid velocity fluctuation and (c) spanwise fluid velocity
fluctuation.

from the drag force and the random forcing are calculated. Using this acceleration
and the particle velocity and position, we predict the collision time. If collision occurs
during Δt , we modify the velocity according to collision rule, and consequently the
acceleration because of drag changes, but we use the same acceleration owing to
random forcing (fluctuating force) in the rest of the time step.

3. Simulation technique
The configuration and coordinate system is the same as we have used in the

DNS (figure 1) in Goswami & Kumaran (2010). The fluctuating-force simulations
have been carried out using a variable-time-step molecular dynamics procedure, and
the time step for advancement is less than the integral time scale of the fluid. As
mentioned before, we are interested in the regime for which the viscous relaxation
time and the collision time of the particles are larger than the integral fluid time
scale. The second moment of the random force in the simulations is determined from
the autocorrelation function of the fluid velocity fluctuations in a Eulerian reference
frame, since it was found in part 1 of the present paper (Goswami & Kumaran 2010)
that the distribution function for the particle acceleration because of the fluid velocity
fluctuations can be obtained from the distribution of the fluid velocity fluctuations in
a Eulerian reference frame. It should be noted that the fluid velocity fluctuations are
position dependent, and they vary in the wall-normal direction. Therefore, the second
moment of the distribution of the random force is also a function of position. We
start our simulation with random initial configuration of the particles. At each step,
we need to calculate the fluid drag on the particle, which is generated because of
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the difference in particle instantaneous velocity and the local average fluid velocity;
the latter is obtained from the results of the DNS of Couette flow in the absence
of the particles Goswami & Kumaran (2010). We use cubic spline interpolation in
the wall-normal direction to obtain the average fluid velocity at the the particle
position.

Particle collisions are implemented using the usual collision rules between spherical
elastic particles, where the relative velocity along the line joining the centres of the
particles is reversed in a collision, while the relative velocity perpendicular to the line
joining the centres remains unchanged. Impending particle collisions are predicted
in a deterministic method, as done in case of the DNS, and not using the type of
stochastic procedure used in direct simulation Monte Carlo. We consider only the
binary collision because the probability of multi-body collision is small at low volume
fractions. To make the collision prediction more computationally efficient, we divide
the simulation domain in three-dimensional lattice cells, and then we find the collision
time for each particle by scanning potential collision partners from the same cell or
from the neighbouring cells. We have used 153 lattice cell with average two to three
particle per cell. The updating of the particle velocity is done according to (2.10),
with the random noise chosen in accordance with (2.11). At every step we need to
calculate the drag on the particle which depends on its wall-normal position. If a
collision occurs within the simulation time step Δt , we advance all the particles in
position and velocities by the time Δtc up to the collision time. The post-collisional
velocities of the colliding particles are calculated by (2.10) in part 1 of the current
work (Goswami & Kumaran 2010), and the simulation is advanced further until the
end of the time step.

Next, we turn to the issue of obtaining the elements of the diffusion tensor, Dij

from the DNSs of the fluid phase. As the results of part 1 (Goswami & Kumaran
2010) have indicated, the acceleration distribution on the particles because of the
fluid velocity fluctuations can be accurately captured from the distribution of fluid
velocity fluctuations in a Eulerian reference frame within the fluid. Therefore, in
order to obtain the components of Dij , we determine the autocorrelations of the fluid
velocity fluctuations in the fluid. However, it is important to note that the Eulerian
time correlation function is a function of position along the wall-normal direction,
and it is necessary to calculate the autocorrelation function at each position in the
wall-normal direction.

The second moments for the random force distributions (2.6) are calculated from
the velocity autocorrelation function for the fluid fluctuating velocity in a Eulerian
reference frame in the absence of the particles and using equation (3.1):
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where Rij is the Eulerian time correlation tensor of turbulent flow field. From the
DNS, we can calculate the Eulerian time correlation function. Figures 1(a)–1(c) show
the decay of the x, y and z components of the correlation function at different
wall-normal positions of the Couette. To calculate the correlation functions from the
DNS we have used larger box size than that used in part 1 (Goswami & Kumaran
2010) to allow the long tail of the correlation (mainly for streamwise fluid velocity
fluctuation) to decay to zero, mimicking the infinite-box-length assumptions. The size
of the box used in this case was 28πδ × 2δ × 8πδ, where δ is the channel half-width
and the upper limit of time for integration used as 600 wall units. The non-zero
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Figure 2. Velocity space diffusion coefficient across the width of the Couette: Dxx (—),
Dyy (−.−), Dzz (−−), Dxy (· · · ).

components of diffusion tensor, obtained using (3.1), have been shown as a function
of the wall-normal coordinate in figure 2.

3.1. Validation of the simulation code

To validate our simulation code, we consider a system with no mean fluid velocity
and no spatial variations, and we assume that the particles do not undergo collisions.
The diffusion tensor is assumed to be anisotropic with a non-zero value of Dxy , as
appropriate for a shear flow. In this case, the system is described by the Langevin
equation (2.5) with zero mean velocity, and the distribution of particle velocities
should be given by (2.7) and (2.8). Therefore, our code validation consists of carrying
out the ‘fluctuating-force’ simulations to test whether the probability distribution of
the particle velocities is Gaussian and whether the velocity variances are consistent
with (2.7) and (2.8). We have carried out this validation using the magnitude of the
diffusion tensor as τ 2

v times Dxx = 210.34, Dyy =4.46, Dzz = 31.51 and Dxy = − 17.40.
The results show that the distribution of particle velocities is a Gaussian distribution in
all three directions; we do not provide the details here for brevity. We have compared
the mean square of the fluctuating particle velocity obtained by simulation with
the results obtained theoretically from (2.8). Figures 3(a)–3(c), show the quantitative
agreement of the different components of the particle mean square velocities for a
wide range of the particle relaxation time.

4. Results of the fluctuating-force simulation
The results of the fluctuating-force simulations, formulated as discussed above,

are compared with the results of the DNS for a range of ratios of the viscous
relaxation time and time between collisions. Table 1 shows the parameter values for
which we have carried out the DNSs. The number of particles in the simulations
has been restricted to 8000, in order to reduce computation time. Because of this,
the ratio of the channel width to particle diameter is relatively small at fixed volume
fraction, as shown in table 1. We have assumed that the particle diameter is 39 μm for
calculating the viscous relaxation time in order to make a connection to real flows,
and because of this, the channel thickness has a maximum value of about 4 mm. It
would be desirable to simulate a channel thickness of about 4 cm in order to make
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the simulations relevant for real applications, but this would require increasing the
number of particles by a factor of 103, which would make it unfeasible to probe
the large range of parameters we have been able to access, as shown in table 1. We
have restricted the particle number so that in both the DNS and the fluctuating-force
formulations, we are able to obtain profiles for all the particle concentrations, velocities
and fluctuating velocities across the entire channel over a range of parameters. The
viscous relaxation time has been varied independently by changing the mass density
of the particles. The average time between collisions has been obtained by counting
the total number of collisions in the simulation and dividing by the period of the
simulation. Since the channel width is small, particles sometimes travel from one
wall to the other without colliding with another particles. Therefore, we have also
independently calculated the average time between particle–particle collisions and
particle–wall collisions. The Stokes number in the present case is also reported as the
ratio of the viscous relaxation time of the particle to the integral time scale of the
fluid. All length and velocity scales are reported in dimensionless form, and they are
non-dimensionalized by the friction length and the friction velocity.

Since the effect of the fluid velocity fluctuations is modelled as a random force
which is a delta function in time, the assumption is that the correlation time of
the turbulent velocity fluctuations τf is small compared with all other time scales
in the problem, including the viscous relaxation time (τv), the time between particle
collisions (τcpp

) and the time between collisions with the wall (τcpw
). The ratio (τv/τf ),

shown explicitly in table 1, is always larger than 1 and varies in the range 4–40. Since
τcpw

is lower than τcpp
in most cases, it is also of interest to examine whether the
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Solid Relaxation Particle– Particle– Particle
Number of Particle volume time of the particle wall Stokes
particles Simulation density fraction particle collision collision number
(Np) runs (ρp) (φs) 2δ/dp (τv) time (τcpp

) time (τcpw
) (St = τv/τf )

(a) Viscous relaxation time of the particle is less than the particle–particle collision time.
(τv < τcpp

)

1 2500 223.2 760.5 294.5 4.1
2 3000 267.8 802.1 293.6 4.9

8000 3 4000 9.44 ×10−5 76.6 357.1 869.8 295.1 6.6
4 5000 446.4 998.0 300.2 8.2
5 6000 535.7 1022.5 306.7 9.9

(b) Viscous relaxation time of the particle is less than the particle–wall collision time.
(τv < τcpw

)

6 4000 193.9 2404.2 416.7 3.6
4000 7 5000 1.9 ×10−5 103.97 242.4 2585.9 410.8 4.5

8 6000 290.8 2712.0 405.1 5.4
9 7000 339.3 2779.9 413.5 6.3

(c) Particle–particle collision time is less than the viscous relaxation time of the particle.
(τcpp

< τv )

10 1500 509.3 340.9 244.5 9.4
11 2000 679.0 351.0 248.8 12.6
12 2500 848.8 386.3 255.4 15.7

8000 13 3000 7.0 ×10−4 39.3 1018.5 419.0 263.2 18.8
14 4000 1358.0 480.4 285.0 25.1
15 5000 1697.5 493.5 291.5 31.4
16 6000 2037.0 541.8 309.7 37.6

Table 1. The particle–particle and particle–wall collision time for particles with different
relaxation times and with different solid volume fractions, Re = 750, based on half of the
channel width and half of the difference between the velocities of the wall.

ratio (τcpw
/τf ), is small. It can easily be verified for runs 10–16 that with the lowest

values of τcpw
, the ratio (τcpw

/τf ) varies between 4.5 and 6, indicating that the time
between particle-wall collisions is also large compared with the integral time in all
cases. Therefore, all simulations are in the regime in which the integral time is small
compared with all other time scales in the problem.

There are three different types of comparisons made in the simulations. The first
is a comparison of the concentration profiles, the mean velocity profiles and the root
mean square fluctuation velocities of the particles across the width of the channel. This
comparison provides an indication of the variation in the dynamical quantities across
the channel for given values of the collision time and the viscous relaxation time.
A second comparison made is the variation of the the mean square velocities in the
central 20 % of the channel as a function of the ratios of the viscous relaxation time to
the fluid time scale. One of the important assumptions made in the fluctuating-force
formulation is that the viscous relaxation time is large compared with the integral time
scale for the fluid velocity fluctuations. If the viscous relaxation time is comparable
to the integral time scale, then the formulation will not provide accurate results. The
comparison of the mean square velocities with viscous relaxation time is intended
to test this assumption and to provide some indication of the range of ratios of the
viscous relaxation time and integral time for which the fluctuating-force formulation
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provides accurate results. In addition, in our comparison of root mean square velocity
profiles, we use a viscous relaxation time at the lower end of the range that we have
studied, which is only about four times the integral time scale. This is intended to
make a comparison under the most stringent conditions, in which the Gaussian white
noise approximation for the fluctuating-force is expected to be the least valid.

The third is a comparison of the velocity distributions from the fluctuating-force
simulations and the DNSs. An issue of interest is the form of the velocity distributions.
It was shown, in part 1 (Goswami & Kumaran 2010), that though the acceleration
distribution functions are always near Gaussian, the fluid velocity distributions
in the wall-normal and spanwise directions deviate significantly from a Gaussian
distribution. It is necessary to examine whether the fluctuating-force simulations also
predict a similar form for the particle velocity distribution.

The comparisons have been made in three volume fraction regimes. The first is
the volume fraction regime in which the viscous relaxation time is small compared
with the particle–particle collision time, but the particle–wall collision time is of the
same magnitude as the relaxation time. In this regime, designated as the free-flight
regime, the particle will collide with the wall before relaxing. The second is at very
low volume fraction, where the viscous relaxation time is small compared with both
the particle–particle and the particle–wall collision time. The third is in the regime in
which the collision time is small compared with the viscous relaxation time. For each
set, we run the simulation for a time period that is three to five times τv , required for
the steady state to be achieved. Then we start the sampling for a duration of three
times τv .

In the results reported here, we have non-dimensionalized the variables based on
the wall units, similar to the case of the DNS described in part 1 (Goswami &
Kumaran 2010). The units of length and time are ν/u∗ and ν/u2

∗, where ν and u∗
are the kinematic viscosity and the friction velocity of the particle-free carrier phase.
The friction velocity is defined as u∗ =(τw/ρ)1/2, where τw is the wall shear stress.
The size of our computational domain is 10πδ × 2δ × 4πδ, where δ is the channel
half-width. For all the simulations, the carrier phase is air at ambient condition, and
the simulation is done at isothermal condition. Based on the friction velocity the fluid
phase Reynolds number Reτ = 52.7; the wall velocity is 14.2; and the shear rate
is 3.71. The error bars reported in the DNS results have been calculated over the
average of 20 ensembles of 1000 samples each.

4.1. Viscous relaxation time is less than the particle–particle collision

First, we consider the flow for a volume fraction of 9.44 × 10−5, where the viscous
relaxation time is small compared to the time between collisions. The particle–wall
collision time is either of the same order or smaller than the particle relaxation time.
The particle relaxation time and the time period for the collisions are reported in
table 1.

In this case, the particle fluctuations are driven by both the fluctuating force and
the inter-particle collisions, and there is a damping effect because of the drag force
on the particles. To study the effect of particle inertia, we have changed the particle
density which in turn changes the particle relaxation time, as was done in part 1.

Figure 4 shows the mean streamwise particle velocities at different wall-normal
positions of the Couette for two different values of the particle relaxation time.
The variation in the normalized particle concentration is shown in figure 5, where
the normalization has been done with respect to the initial homogeneous particle
concentration. The mean velocity profile for the particles shows a substantial slip
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Figure 4. Variation of the streamwise particle velocity in the wall-normal direction for
different particle relaxation times. In all the cases the viscous relaxation time of the particle is
less than the particle–particle collision time (τv < τcpp

) and φ = 9.44 × 10−5. Simulation: run
2, DNS (�); run 5, DNS (�); run 2, FFS (—); run 5, FFS (−−). The parameters for all the
runs are given in table 1.
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Figure 5. Variation of the normalized particle concentration. The viscous relaxation time of
the particle is less than the particle–particle collision time (τv < τcpp

) and φ = 9.44 × 10−5.
Simulation: run 2 , DNS (�); run 5, DNS (�); run 2, FFS (—); run 5, FFS (−−). The
parameters for all the runs are given in table 1.

at the wall, as the wall velocity is 14.2 times the friction velocity. The particle
concentration profile shows that there is a migration of the particles towards the wall
of the channel at lower particle relaxation time; this is because of the inhomogeneity in
the fluctuating force exerted on the particles. Since the mean square of the fluctuating
force (because of the fluid velocity fluctuations) is larger at the centre of the channel, a
diffusion of particles towards the wall is caused. In both cases, it is observed that there
is quantitative agreement between the DNS and the fluctuating-force simulations, even
though the viscous relaxation time is only about five times the fluid integral time scale
for the lower value of the particle relaxation time in the fluctuating-force simulations.
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Figure 6. Second moments of the particle velocity distribution (a) 〈v′2
x 〉, (b) 〈v′2

y 〉, (c) 〈v′2
z 〉

and (d ) 〈v′
xv

′
y〉 at different cross-stream positions. In all the cases the viscous relaxation time

of the particle is less than the particle–particle collision time (τv < τcpp
) and φ = 9.44 × 10−5.

Simulation: run 2, DNS (�); run 5, DNS (�); run 2, FFS (—); run 5, FFS (−−). The
parameters for all the runs are given in table 1.

Figure 6 shows the variation of the second moments of the particle velocity
distributions with the cross-stream distance. It is found that the mean square velocities
in the flow direction are quantitatively predicted by the fluctuating-force simulations.
The streamwise mean square velocities increase as the wall is approached for two
reasons. The first is that the increase in the velocity gradient as the wall is approached,
which results in greater fluctuations because of the cross-stream motion of the
particles. The second is that the mean square of the fluid velocity fluctuations also
shows a maximum near the wall of the channel, as shown in figure 3 of part 1
(Goswami & Kumaran (2010). It should be noted that the particle–wall collisions are
considered to be elastic and smooth, so that they do not result in fluctuations along
the streamwise direction. The second moment of the velocity distribution 〈v′

xv
′
y〉 is

also quantitatively predicted by the fluctuating-force simulations. The moment 〈v′
xv

′
y〉

is the particle-phase streaming stress. This stress has to go to zero at the wall for
the particle–wall collision model we have chosen, because particle–wall collisions
are elastic and smooth, and they do not exert any net stress on the particles. The
mean square velocities in the wall-normal and spanwise directions are also in good
agreement, though the difference is larger than that in the streamwise direction. It
should be noted that the mean square velocities in these directions are small compared
with those in the streamwise direction in both the DNS and the fluctuating-force
simulations.
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Figure 7. Second moments of the particle velocity distribution (a) 〈v′2
x 〉, (b) 〈v′2

y 〉, (c) 〈v′2
z 〉

and (d ) 〈v′
xv

′
y〉 obtained from the DNS (− − �) and the FFS (—�), averaged over the

homogeneous centre core of the Couette. The viscous relaxation time of the particle is less
than the particle–particle collision time, (τv < τcpp

) and φ = 9.44 × 10−5. Simulation from run
1 to run 5. The detailed parameters for all the runs are given in table 1.

Figure 7 shows the second moments of the velocity distribution averaged over the
central 20 % of the Couette (y/δ =0.8 to 1.2), where the root mean square of the
fluid velocity is nearly a constant, as a function of the ratio of the viscous relaxation
time and the fluid integral time scale (τv/τf ). The integral time scale assumed here is
that for velocity fluctuations in the streamwise direction, since this is larger than that
in the wall-normal and spanwise directions. There is excellent agreement between the
fluctuating force and the DNS for the root mean square velocities in the streamwise
direction and in the second moment 〈v′

xv
′
y〉. As expected, the agreement becomes

better as the ratio (τv/τf ) increases. The comparison for the mean square velocities
in the wall-normal and spanwise directions are also well predicted by the fluctuating-
force simulations, though the agreement is not as good as that for the streamwise
mean square velocity.

The velocity distribution functions for the for the case (τv < τcpp
) are shown as the

function of the particle fluctuating velocity in figure 8. The distribution functions have
been calculated in the central 20 % of the Couette, where the fluid root mean square
velocities are nearly a constant. The first important results of this comparison is that
the fluctuating force is able to quantitatively capture the distribution of the particle
velocities and not just the moments of the velocity distribution. The second important
result is that the fluctuating-force simulation accurately captures the non-Gaussian
nature of the velocity distribution in the wall-normal and the spanwise direction that
is observed in the DNSs. The agreement in all cases is quantitative up to about three
decades of variation in the distribution function.
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Figure 8. The particle velocity distribution function at the centre core of the Couette for the
(a) streamwise, (b) wall-normal and (c) spanwise components of velocity fluctuations. The
viscous relaxation time of the particle is less than the particle–particle collision time (τv < τcpp

)

and φ = 9.44 × 10−5. Simulation: run 2, DNS (�); run 5, DNS (�); run 2, FFS (—); run 5,
FFS (−−). The parameters for all the runs are given in table 1.

4.2. Viscous relaxation time is less than the particle–wall collision time

In this section we concentrate on the dilute regime with solid volume fraction
1.9 × 10−5, where the relaxation time is less than both the particle–particle and the
particle–wall collision time. The particle relaxation and the collision times are reported
in table 1. Figure 9 shows the mean streamwise particle velocity across the width of
the Couette for different particle relaxation times. The figure clearly indicates that
at higher values of y+ near the centre of the Couette, the prediction from both the
simulations matches very well. Near the wall there is a maximum difference that is
within 15 %. In this case, the low particle Stokes number (4–5) might be the reason
of the deviation. The normalized particle concentration is shown in figure 10. Because
of the higher values of fluid fluctuating velocities at the centre, particles migrates
towards the wall. The near-wall particle concentration is nearly two times the centre-
plane concentration. The concentration profile obtained from the fluctuating-force
simulation matches fairly well with the results of the fluctuating-force simulation,
except very near the wall region and for the particle with very low relaxation time.

Figure 11 shows the variation of the second moment of the particle velocity
fluctuation at different cross-stream positions for the particles with different viscous
relaxation times. The magnitude of second moment decreases with increasing particle
relaxation time. Results obtained from the fluctuating-force simulation matches well
with the DNS results for streamwise fluctuation. Figures 11(a) and 11(b) show the
variation of the wall-normal and spanwise velocity fluctuations at different cross-
stream positions. The fluctuating-force simulation overpredicts the second moment
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Figure 9. Variation of streamwise particle velocity in the wall-normal direction. The viscous
relaxation time of the particle is less than the particle–wall collision time (τv < τcpw

) and

φ = 1.9 × 10−5. Simulation: run 7, DNS (�); run 9, DNS (�); run 7, FFS (—); run 9, FFS
(−−). The parameters for all the runs are given in table 1.
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Figure 10. Variation of the normalized particle concentration. The viscous relaxation time
of the particle is less than the particle–wall collision time (τv < τcpw

) and φ = 1.9 × 10−5.
Simulation: run 7, DNS (�); run 9, DNS (�); run 7, FFS (—); run 9, FFS (−−). The
parameters for all the runs are given in table 1.

of these two components by 15 % at the centre, though the near-wall stress is well
predicted. Figure 11(c) shows the second moment 〈v′

xv
′
y〉 at different y+. As we move

towards the centre the magnitude of the shear stress increases. The near-wall particle
shear stress is zero. The fluctuating-force simulation prediction shows good agreement
with the results from the DNS.

Figure 12 shows the second moment of the particle velocities averaged over the
central 20 % of the Couette. There is good agreement between the fluctuating force
and the DNS for the root mean square velocities in the streamwise direction. In
the wall-normal and spanwise directions differences between the results predicted by
two simulation technique are 15–20 %. The figure shows the decrease in the second
moment of particle velocity 〈v′

xv
′
y〉 with increasing particle inertia. In this case also
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Figure 11. Variation of the second moments of the particle velocity distribution (a) 〈v′2
x 〉, (b)

〈v′2
y 〉, (c) 〈v′2

z 〉 and (d ) 〈v′
xv

′
y〉 at different cross-stream positions. In all cases viscous relaxation

time of the particle is less than the particle–wall collision time (τv < τcpw
) and φ = 1.9 × 10−5.

Simulation: run 7, DNS (�); run 9, DNS (�); run 7, FFS (—); run 9, FFS (−−). The
parameters for all the runs are given in table 1.

results of the fluctuating-force simulations are in good agreement with the DNS
results.

The particle velocity distribution function for both the simulations are shown in
figure 13. As in the previous cases the distribution functions have been calculated at
the central 20 % of the Couette. For the clarity of the figures, we have not plotted the
corresponding Gaussian distributions. The streamwise velocity distribution obtained
from the fluctuating-force simulation fits well with that obtained from the DNS. In
addition, the fluctuating-force simulations capture the non-Gaussian nature of the
velocity distribution in the wall-normal and the spanwise direction that is observed
in the DNS.

4.3. Particle–particle collision time is less than the viscous relaxation time

Next, we consider the case in which the inter-particle collision time is less than the
viscous relaxation time at a solid volume fraction of 7 × 10−4. Table 1 gives the
particle relaxation times and the collision times for the particle–particle and particle–
wall collisions. Figure 14 shows the mean particle velocity at different wall-normal
positions of the Couette, and figure 15 shows the concentration profile. It is found
that the variation in the concentration and mean velocity is much smaller when the
collision time is small compared with the viscous relaxation time. This is because
the fluctuations generated by inter-particle collisions transport mass and momentum
across the flow, thus homogenizing the concentration and mean velocity fields. We
also find that there is substantial slip at the wall of the Couette, and the mean particle
velocity is different from the velocity of the top plate. There is, once again, quantitative
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Figure 12. The second moments of the particle velocity distribution (a) 〈v′2
x 〉, (b) 〈v′2

y 〉, (c)

〈v′2
z 〉 and (d ) 〈v′

xv
′
y〉 obtained from the DNS (− − �) and the FFS (—�), averaged over

the central 20 % of the Couette. The viscous relaxation time of the particle is less than the
particle–wall collision time (τv < τcpw

) and φ = 1.9 × 10−5. Simulation from run 6 to run 9. The
detailed parameters of all the runs are given in table 1.

agreement between the complete DNSs and the fluctuating-force simulation. The ratio
of the viscous relaxation time and the integral time scale varies in the range 10–38 for
the results shown in figures 14 and 15. Therefore, the assumption of Gaussian white
noise for the fluctuating force is a good one in this case. This explains the excellent
agreement between the DNS and the fluctuating-force simulations.

Figure 16 shows variation of the mean square of the particle velocities in the three
directions and also the second moment of the fluctuating velocity 〈v′

xv
′
y〉 for τc < τv . In

this case, collisions tend to equalize the root mean square velocities across the channel,
and the variations across the channel are much less than those for τv < τc. The mean
square velocity in the streamwise direction is larger than that in the wall-normal and
the spanwise direction by a factor of about two in the centre of the channel, though
the streamwise mean square velocity is much larger near the wall. This is due to
an increase in the mean square of the fluid velocity fluctuations at the wall, which
results in a greater fluctuating force in this region. An interesting observation is that
〈v′2

y 〉, 〈v′2
z 〉 and the concentration are nearly uniform across the Couette channel. This

implies that the component τp
yy of the streaming stress tensor for the particle phase is

nearly constant across the channel. (Note that at the very low volume fractions under
consideration, the collisional stress is negligible in comparison with the streaming
stress.) This implies that the net force exerted by the fluid on the particles in the y

and z directions is negligible because the gradient of the stress is equal to the net force.
The component τp

xy is found to be non-zero, indicating that there is a local non-zero
net force exerted by the fluid on the particles in the x direction. Therefore, the particle
velocity fluctuations are driven by the force exerted by the fluid velocity fluctuations
in the x direction and the difference between the particle and fluid mean velocities;
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Figure 13. Particle velocity distribution function at the centre core of the Couette for the
(a) streamwise, (b) wall-normal and (c) spanwise components of velocity fluctuations. The
viscous relaxation time of the particle is less than the particle–wall collision time (τv < τcpw

)

and φ = 1.9 × 10−5. Simulation: run 7, DNS (�); run 9, DNS (�); run 7, FFS (—); run 9, FFS
(−−). The parameters for all the runs are given in table 1.
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Figure 14. Variation of the streamwise particle velocity in the wall-normal direction. The
particle–particle collision time is less than the viscous relaxation time of the particle (τcpp

< τv)

and φ = 7.0 × 10−4. Simulation: run 13, DNS (�); run 16, DNS (�); run 13, FFS (—); run 16,
FFS (−−). The parameters for all the runs are given in table 1.

this is then transmitted to the cross-stream directions because of collisions. The results
of the fluctuating-force simulations are, once again, in quantitative agreement with
those of the complete DNSs.
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Figure 15. Variation of the normalized particle concentration. The particle–particle collision
time is less than the viscous relaxation time of the particle (τcpp

< τv) and φ = 7.0 × 10−4.
Simulation: run 13, DNS (�); run 13, FFS (—). The parameters for run 13 are given in table 1.
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Figure 16. Variation of the second moments of the particle velocity distribution (a) 〈v′2
x 〉, (b)

〈v′2
y 〉, (c) 〈v′2

z 〉 and (d ) 〈v′
xv

′
y〉 at different cross-stream positions. In all the cases particle-particle

collision time is less than the viscous relaxation time of the particle (τcpp
< τv) and

φ = 7.0 × 10−4. Simulation: run 13, DNS (�); run 16, DNS (�); run 13, FFS (—); run
16, FFS (−−). The parameters for all the runs are given in table 1.

In figure 17 we show the mean square velocities averaged over the central 20 % of
the channel as a function of the ratio of the viscous relaxation time and the integral
time scale for the fluid. The agreement between the DNS and the fluctuating-force
simulations is excellent, as expected, when the ratio of the viscous relaxation time
and the integral time scale is large. Figure 18 shows the distribution functions for the
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Figure 17. The second moments of the particle velocity distribution (a) 〈v′2
x 〉, (b) 〈v′2

y 〉, (c)

〈v′2
z 〉 and (d ) 〈v′

xv
′
y〉 obtained from the DNS (− − 	) and the FFS (—�), averaged over the

homogeneous centre core of the Couette. The Particle–particle collision time is less than the
viscous relaxation time of the particle (τcpp

< τv) and φ = 7.0 × 10−4. Simulation: run 10 to
run 16. The parameters for all the runs are given in table 1.

fluctuating velocities in the three directions. As expected, the particle velocity distribu-
tion function is well approximated by a Gaussian distribution in all cases, and the root
mean square velocities in the three directions differ by only about 25 %. (We have not
potted the corresponding Gaussian fits for clarity.) The fluctuating-force simulation
captures, quantitatively, the probability distribution function for the velocities in all
three directions, even when the value of the distribution function is as small as 10−3.

Finally, we address the issue of the extent of change in the particle velocity
fluctuations because of the gas turbulence, especially when the viscous relaxation
time is large so that the particle inertia is large. In this regime, fluctuations could
be generated in two ways: the first is due to the particle mean velocity variation
across the channel which generates collisions, and the second is due to turbulent
velocity fluctuations. It is of interest to examine what fraction of the particle velocity
fluctuations is actually induced by the fluid turbulence. To do this, we carry out
simulations for the same system with and without turbulent fluctuations for a wide
range of τv and for the two cases: the first one is when τv < τc, and the second one is
the regime in which τc < τv . To quantify the effect of turbulence, across the channel
we calculated the factor F defined as

F =

⎡
⎢⎢⎣

∫ 2δ

0

( 〈
v′2

it

〉
−

〈
v′2

i0

〉 )2
dy∫ 2δ

0

( 〈
v2

it

〉 )2
dy

⎤
⎥⎥⎦

1/2

, (4.1)
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Figure 18. The particle velocity distribution function at the centre core of the Couette for
the (a) streamwise, (b) wall-normal and (c) spanwise components of velocity fluctuations. The
particle–particle collision time is less than the viscous relaxation time of the particle (τcpp

< τv)

and φ =7.0 × 10−4. Simulation: run 13, DNS (�); run 16, DNS (�); run 13, FFS (—); run 16,
FFS (−−). The parameters for all the runs are given in table 1.
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Figure 19. Effect of turbulence fluctuation on the second moment of the particle velocity
fluctuation, when the viscous relaxation time of the particle is less than the particle–particle
collision time (τv < τcpp

) and φ = 9.44 × 10−5. The streamwise component (− − ◦), the
wall-normal component (− − 	) and the spanwise component (− − �); F is defined in
(4.1). All the parameters corresponding to the Stokes numbers (τv/τf ) are given in table 1.

where 〈v′2
it

〉 is the second moment of the particle velocity fluctuations in presence of

turbulence fluctuation and 〈v′2
i0

〉 is the second moment of the particle velocity in the
absence of turbulence fluctuation. Figures 19 and 20 show the decrease in the particle
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Figure 20. Effect of turbulence fluctuation on the second moment of the particle velocity
fluctuation, when the particle–particle collision time is less than the viscous relaxation time of
the particle (τc < τv) and φ = 7.0 × 10−4. The streamwise component (− − �), the wall-normal
component (− − �) and the spanwise component (− − �); F is defined in (4.1). All the
parameters corresponding to the Stokes numbers (τv/τf ) are given in table 1.

mean square velocities in the three directions with and without the fluctuating force
on the particles for τv < τc and τc < τv respectively. It is observed that the fluctuating
force changes the profile of the mean square velocities, resulting in a variation of
about 30–80 % for the first case depending on the Stokes number of the particle and
10–25 % for the second case.

The particle velocity fluctuations are generated because of collisions, turbulence
and the particle motion across streamlines in the presence of a mean shear. When a
particle moves in the cross-stream direction, the mean velocity at the new location
is different from that at the old location, but the particle velocity has not changed;
so this generates a particle velocity fluctuation in the streamwise direction. In the
cross-stream and spanwise directions, the particle velocity fluctuations are generated
only because of the turbulent fluctuations and particle collisions. Since the generation
of the streamwise particle velocity fluctuations because of the cross-stream motion
of particle is present even in the absence of turbulence, the percentage change in the
streamwise mean square velocity is lower than that in the cross-stream and spanwise
directions. (Note that figures 19 and 20 give the percentage change, and not the
absolute change, in the mean square velocities in accordance with (4.1).) In the limit
where the collision time is smaller than the viscous relaxation time, there is a greater
generation of the particle velocity fluctuations because of collisions owing to the
higher frequency of collisions. When the viscous relaxation time is smaller than the
collision time, fluctuations in the cross-stream and spanwise directions are generated
mainly because of fluid velocity fluctuations. Because of this, the percentage change
in the mean square velocity in (4.1) is larger when the viscous relaxation time is small
compared with the collision time (figure 19) and is smaller when the collision time is
small compared with the viscous relaxation time (figure 20).

5. Theoretical analysis of particle velocity distribution
In this section we present the theoretical analysis of the particle velocity distribution

function in two regimes.



114 P. S. Goswami and V. Kumaran

d τv Stγ (τvDxx ) (τvDyy ) (τvDyy )St2
γ (γ̇ d)2 φ(γ̇ d)2St3

γ

223.2 10.06 0.85 0.12 12.32 3.85 × 10−3 3.69 × 10−4

267.8 10.70 0.71 0.10 11.63 3.02 × 10−3 3.50 × 10−4

1.377 357.1 10.79 0.53 0.08 8.88 1.71 × 10−3 2.02 × 10−4

446.4 11.02 0.43 0.06 7.40 1.16 × 10−3 1.47 × 10−4

535.7 12.26 0.35 0.05 7.62 0.99 × 10−3 1.72 × 10−4

Table 2. Expected magnitudes of the streamwise mean square velocity because of different
sources of the streamwise particle velocity fluctuations.

5.1. Viscous relaxation time less than collision time

In the plane Couette flow, the turbulent velocity fluctuations are highly anisotropic,
and the fluctuations in the streamwise direction are much larger than that in the
wall-normal and spanwise directions. Therefore, one would expect the streamwise
particle velocity fluctuations also to be larger than those in the other two directions.
The streamwise velocity fluctuations could occur because of three reasons:

(a) One would, intuitively, expect the streamwise (x) component of the particle
mean square velocity to scale as (Dxxτv), owing to the fluctuating force exerted by the
fluid turbulent velocity fluctuations in this direction.

(b) Another mechanism which could generate streamwise velocity fluctuations is
the transport of particles across streamlines because of the cross-stream (y) turbulent
velocity fluctuations. The magnitude of the velocity fluctuation in the cross-stream
direction is (Dyyτv)

1/2, and this fluctuation transports the particle a distance (Dyyτv)
1/2×

τv in the cross-stream direction. The streamwise mean square velocity difference
because of the cross-stream transport is (Dyyτv)(γ̇ τv)

2 ∼ St2
γ (Dyyτv), where Stγ = (γ̇ τv)

is the Stokes number based on the mean strain rate. Therefore, the streamwise velocity
fluctuation because of cross-stream motion scales as St2

γ Tyy , where Tyy = (Dyyτv) is the
temperature for the cross-stream velocity fluctuations. We have done simulations in
the current paper where the streamwise fluid velocity fluctuations have been switched
off, and there are only cross-stream fluid velocity fluctuations. These simulations have
verified the scaling Txx ∼ (Dyyτv)St2

γ .
(c) A third mechanism is due to the particle collisions induced by the mean velocity

gradient of the particle phase. The frequency of such collisions is proportional to
(nd2(γ̇ d)), where γ̇ is the mean velocity gradient for the particle phase; d is the particle
diameter; (γ̇ d) is the velocity difference between particles on streamlines separated by
one particle diameter; and n is the number density of the particles. When expressed
in terms of the volume fraction φ ∼ nd3, the collision frequency is φγ̇ . The transverse
velocity fluctuation induced because of this collision is proportional to (γ̇ d), and so
the particle travels a distance (γ̇ dτv) in the cross-stream direction because of the
collision. The mean square of the velocity fluctuation because of the difference in the
mean velocity at these two locations is φ(γ̇ d)2St3

γ .
The expected velocity fluctuations because of these three mechanisms are shown in
table 2. It is clear that the dominant contributions are from the fluid turbulent velocity
fluctuations in the streamwise direction, as well as because of the fluid turbulent
velocity fluctuations in the cross-stream direction inducing the streamwise particle
velocity fluctuations. The second mechanism listed above is verified by carrying
out simulations in which the streamwise turbulent velocity fluctuations are switched
off, and only the cross-stream turbulent fluctuations are incorporated. When both
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d τv Stγ (τvDyy ) (γ̇ d)2 φ(γ̇ d)2Stγ Txx φ(T1/2
xx τv/d)Txx

223.2 10.06 0.12 3.85 × 10−3 3.65 × 10−6 4.30 0.136
267.8 10.70 0.10 3.02 × 10−3 3.06 × 10−6 3.83 0.138

1.377 357.1 10.79 0.08 1.71 × 10−3 1.74 × 10−6 3.22 0.142
446.4 11.02 0.06 1.16 × 10−3 1.20 × 10−6 2.72 0.137
535.7 12.26 0.05 0.99 × 10−3 1.15 × 10−6 2.38 0.135

Table 3. Expected magnitudes of the cross-stream mean square velocity because of different
sources of the wall-normal particle velocity fluctuations.

components of the fluid velocity fluctuations are present, it is shown that the total
particle mean square velocity is obtained by adding up the contributions because of
the two components.

Next, we analyse the cross-stream velocity fluctuations in the limit where the viscous
relaxation time is small compared with the time between collisions. The cross-stream
particle velocity fluctuations could be due to three reasons:

(a) Cross-stream fluid velocity fluctuations.
(b) Collisions between particles travelling on nearby streamlines because of the

difference in mean velocity, which was the mechanism analysed by Tsao & Koch
(1995). The post-collisional cross-stream velocity is O(dγ̇ ), and so one would expect
the particle velocity fluctuations generated by this mechanism to be O(dγ̇ ). The
frequency of collisions because of this mechanism is O((nd2)(dγ̇ )), where n is the
number of particles per unit volume. Therefore, the rate of increase in the fluctuating
velocity because of collisions is O((nd2)(dγ̇ )3) ∼ φ(dγ̇ )2γ̇ . The rate of decrease in the
mean square of the cross-stream fluctuations is O(Tyy/τv), where Tyy (the cross-stream
granular temperature) is the mean square of the cross-stream velocity fluctuations.
From this, we find that the granular temperature Tyy ∼ φ(dγ̇ )2Stγ , where the Stokes
number Stγ = (γ̇ τv).

(c) The third mechanism for the generation of cross-stream fluctuations is the
collisions induced by the streamwise velocity fluctuations. If Txx is the mean square
of the streamwise velocity fluctuations (granular temperature in the streamwise
direction), then the frequency of collisions because of this mechanism is (nd2T1/2

xx ).
The post-collisional cross-stream velocity because of this mechanism is O(

√
Txx ), and

so the rate of increase of the cross-stream fluctuations owing to this mechanism
is O(nd2T3/2

xx ). The rate of decrease of the cross-stream velocity fluctuations
because of viscous drag is O(Tyy/τv). A balance between these indicates that
Tyy ∼ (nd2T1/2

xx τv)Txx ∼ φ(
√

Txxτv/d)Txx .
The magnitudes of the particle velocity fluctuations because of these three mechanisms,
as well as the mean square velocities, are shown in table 3.

It is clear, from table 3, that the cross-stream particle velocity fluctuations because
of the second mechanism above (difference in mean velocity on nearby streamlines)
is smaller than that because of the first and third mechanisms. The third mechanism
(collisions between particles induced to the streamwise particle velocity fluctuations)
results in a relatively small mean square velocity because the source of fluctuations
is proportional to the volume fraction, which is small. However, the magnitude of
the post-collisional velocity because of this mechanism is larger than that because
of the first mechanism, which is the cross-stream turbulent velocity fluctuations.
Therefore, we would expect the third mechanism to be dominant at larger velocities
corresponding to the non-Gaussian high-velocity tails of the distribution functions.
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Figure 21. The particle velocity fluctuation in the streamwise direction in the presence of
mean shear and the cross-stream fluid velocity fluctuation but in the absence of the streamwise
fluid velocity fluctuation, when the viscous relaxation time of the particle is less than the
particle–particle collision time (τv < τcpp

) and φ = 9.44 × 10−5.

In the analysis, we derive the cross-stream velocity distributions generated because
of collisions between particles induced by the streamwise velocity fluctuations, and
verify that the high-velocity tails of the distribution function can be predicted by this
mechanism.

The streamwise velocity distribution is first analysed in the limit where the particle
relaxation time is less than the collision time. This expected scaling is tested in the
fluctuating-force simulations in the centre of the Couette flow by setting Dxx = 0, while
the other two components of the diffusivity and the mean strain rate are non-zero.
The Stokes number in the simulations is changed by changing the mass density of
the particle while keeping the flow velocity a constant, which in turn changes the
viscous relaxation time of the particles. The results for (Txx/(Dyyτv)) versus St2

γ , shown
in figure 21, show two linear regimes, both of which intersect at a Stokes number
(based on the local strain rate) of about 7. The linear fit at low Stokes number passes
through the origin, as expected, because the streamwise velocity fluctuations should
become zero when the strain rate is zero. The linear fit at high Stokes number, which
is of primary interest in the present analysis, does have a non-zero intercept at zero
Stokes number. The reason for the transition between the two regimes is not clear at
present and needs to be studied further.

Next, we consider the situation in which the streamwise particle velocity fluctuations
are induced because of both the streamwise diffusivity Dxx in the Boltzmann equation
(2.1) and the particle motion across streamlines owing to the cross-stream turbulent
fluctuations. In this case, our simulations show (figure 22) that the two contributions
are additive, that is to say Txx =(τvDxx ) + τvDyy (14 + 0.12St2

γ ) in the high-Stokes-
number regime. Therefore, the streamwise mean square velocity Txx is the sum of the
contributions because of the streamwise diffusivity Dxx and the particle motion across
the streamlines because of the cross-stream diffusivity Dyy .

The distribution function for the cross-stream velocities induced by the streamwise
velocity fluctuations can be calculated as follows. In this calculation, we assume that
collisions are induced by the velocity difference between particles with velocity in the
streamwise direction, since the cross-stream velocity fluctuations are small compared
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Figure 22. Scaling for the streamwise velocity fluctuation in presence of shear and the
streamwise fluid velocity fluctuation to depict the contribution of the two sources, when
the viscous relaxation time of the particle is less than the particle–particle collision time
(τv < τcpp

) and φ = 9.44 × 10−5.

with those in the streamwise direction. The viscous relaxation time is considered to
be small compared with the time between collisions. The pre-collisional distribution
function for the particles is of the form

f =
1√

2πTxx

exp
(

− v2
x/2Txx

)
δ(vy)δ(vz). (5.1)

Since the collisional probability has cylindrical symmetry about the x axis for particles
with velocity fluctuations in the x direction, it is most convenient to consider a

cylindrical coordinate system with velocity components vx and vr =
√

v2
y + v2

z and

meridional angle φ = arctan (vz/vy).
The distribution function for the radial velocity of the particles, vr , is calculated

from the Boltzmann equation. Since we have neglected the fluctuating force in the
radial direction, the dominant terms in the Boltzmann equation are the acceleration
because of the fluid drag, i.e. −(vr/τv), and the collision integral. If Nin(vr )vrdvrdφ

and Nout (vr )vrdvrdφ are the fluxes of particles into and out of the differential volume
vrdvrdφ because of collisions (with dimensions of number of particles per unit time),
then the Boltzmann equation can be written as

− 1

τvvr

∂

∂vr

(
v2

r f (vr )
)

= Nin(vr ) − Nout (vr ). (5.2)

Here, Nin(vr ) is the flux of particles into a differential volume because of collisions
between particles with pre-collisional velocities v′ and v∗′

, such that the radial velocity
of one of the particles is in the differential volume dvr about vr . It will be shown,
a little later, that vr is close to zero for most of the particles, and the fraction of
particles with vr ∼

√
Txx is O(τv/τc), which is small in the limit τv � τc. Therefore,

while calculating the collisional influx of particles, we consider collisions between
pairs of particles with velocity distributions given by (5.1).

Consider a collision between two particles with velocities vx and v∗
x , such that

the line joining the centres of the particles makes an angle θ with the x axis. It is
convenient to express the particle velocities in terms of the velocity of the centre of
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mass vx and the relative velocity wx ,

v̂x = (vx + v∗
x)/2, (5.3)

wx = vx − v∗
x (5.4)

The velocity of the centre of mass is unchanged in a collision. In an elastic collision
between smooth particles, the relative velocity along the line joining the centres of the
particles is reversed, while the relative velocity tangential to the surfaces at contact
is unchanged. The post-collisional relative velocities w′

r and w′
x are related to the

pre-collisional relative velocity wx by

w′
r = wx sin (2θ), (5.5)

w′
x = −wx cos (2θ). (5.6)

The frequency of collisions between the pairs of particles with relative velocity wx is
given by

ν(wx, θ, φ) dwx sin (θ) dθ dφ = n2f (wx)d
2
p(wx cos (θ)) dwx sin (θ) dθ dφ. (5.7)

Here, (wx cos (θ)) is the component of the relative velocity along the line joining the
centres of the particles, and dp is the particle diameter. Since the collision results
in a pair of particles with post-collisional velocity (w′

r , w
′
x), the collision frequency

can be re-expressed in terms of the post-collisional relative velocity instead of the
pre-collisional relative velocity,

ν(w′
r , w

′
x, φ)w′

r dw′
r dw′

x dφ = n2f (wx) d2
p(wx cos (θ)) dwx sin (θ) dθ dφ. (5.8)

Using the relations between the pre- and post-collisional relative velocities, (5.5) and
(5.6), we obtain the expression for the collision frequency as

ν(w′
r , w

′
x, φ) =

n2f (w′
r , w

′
x)d

2
p

2
√

w
′2
r + w

′2
x

. (5.9)

In deriving the above equation, we have used the relationship
dwx dθ =(2

√
w

′2
r + w

′2
x )−1 dw′

r dw′
x for the transformation of coordinates, and

the distribution function (5.1) can be expressed in terms of (w′
r , w

′
x) as

fw(w′
r , w

′
x) =

1√
4πTxx

exp
(

−
(
w

′2
x + w

′2
r

)
/4Txx

)
. (5.10)

Since we are interested only in the cross-stream velocity of the particles, the collision
frequency (5.9) can be integrated over all angles φ and the relative streamwise
velocities w′

x , to obtain

ν(w′
r , φ) =

∫
dw′

xν(w′
r , w

′
x, φ) = (1/(8

√
πTxx ))n2d2

p exp
(

− w
′2
r /8Txx

)
K0

(
w

′2
r /4Txx

)
,

(5.11)

where K0 is the modified Bessel function. In the above calculation, we have integrated
over the domain −∞ � w′

x � ∞. The above collision results in a particles with radial
velocity vr = (w′

r/2). Therefore, the flux of particles into the differential volume dvr

about vr is

Nin(vr, φ) = (1/(2
√

πTxx ))n2d2
p exp

(
− v2

r /2Txx

)
K0

(
v2

r /Txx

)
. (5.12)
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The collisional flux of particles out of the differential volume Nout (vr ) is due to the
collision of particles with velocity in the differential volume vr with other particles.
This collision frequency can be written, using the molecular chaos approximation, as

ν(v) = n2

∫
dk

∫
dv∗f (v)f (v∗)d2

p(v − v∗).k, (5.13)

where k is the unit vector along the line joining the centres of the particles, and the
above integral is carried out over all velocities v∗. The above integral is difficult to
evaluate analytically, but simplifications can be made when the fraction of particles
with radial velocity vr ∼

√
Txx is small. In this case, we can assume that the velocity

of the second colliding particle, v∗, is given by (5.1); the error made because of
this is proportional to the ratio (τc/τv). In addition, while calculating the integral,
we assume that the relative velocity distribution for the particles is given by (5.10).
This approximation is a good one if the radial velocity of vr �

√
Txx . It is a poor

approximation for particles with radial velocity vr ∼
√

Txx . However, in the latter case,
the dominant mechanism of transport of particles in velocity space is due to the
viscous drag; the flux of particles because of collisions is O(τv/τc) smaller than that
because of the viscous drag. Therefore, this approximation for the relative velocities
provides a uniform approximation for all particles. With this, the collisional flux
Nout (vr ) is given by

Nout (vr ) = nd2
p

√
πTxxf (vr ). (5.14)

With the above approximation for Nout (vr ), the equation for the radial distribution
function becomes

∂f (vr )

∂vr

+
(2 − ε)f

vr

= − 1√
πTxx

n2d2
pτv

vr

exp
(

− v2
r /2Txx

)
K0(v

2
r /2Txx )

= − ε

2πTxxvr

exp
(

− v2
r /2Txx

)
K0

(
v2

r /2Txx

)
, (5.15)

where ε = (2τvnd2
p

√
πTxx ) is proportional to the ratio of the viscous relaxation time

and the time between collisions. The above equation can be easily solved to obtain f

as a function of vr ,

f (vr ) = − ε

2πTxx

vε−2
r

∫ vr

∞
dv′

r (v
′
r )

1−ε exp (−(v′
r )

2/2Txx )K0((v
′
r )

2/2Txx ). (5.16)

The integral in (5.15) is difficult to carry out analytically. However, it is easily verified
that the above distribution function is normalized, that is∫ 2π

0

dφ

∫ ∞

0

dvr vrf (vr ) = 1. (5.17)

The mean square of the radial velocity is easily calculated from the above distribution
function (5.16),

〈v2
r 〉 =

∫ 2π

0

dφ

∫ ∞

0

dvr v3
r f (vr )

=
4Txxε

3(2 + ε)
. (5.18)
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Figure 23. The mean square radial velocity of the particle obtained from the theory and
simulation, when viscous relaxation time of the particle is less than the particle–particle
collision time (τv < τcpp

) and φ =9.44 × 10−5.

In the limit ε → 0, the leading approximation for the above equation is

〈v2
r 〉 =

2Txxε

3

=
4
√

πτvnd2T3/2
xx

3
. (5.19)

Though an analytical expression for the distribution function is difficult to obtain,
the limiting behaviours for vr �

√
Txx and vr �

√
Txx are easily obtained. For

vr �
√

Txx , the Bessel function K0(v
2
r /2Txx ) ∼

√
π/2(v2

r /2Txx ) exp (−v2
r /2Txx ), and so

the distribution function

f ∼ Γ ((1 − ε)/2, (v2
r /Txx ))

v2−ε
r

. (5.20)

This indicates a rapid decay in the distribution function, faster than an exponential.
For vr �

√
Txx , the Bessel function has the asymptotic behaviour K0(v

2
r /2Txx ) →

− log (v2
r /4Txx ) − γ . In this case, it is easily verified that

f ∼ log (v2
r /Txx )

2 − ε
(5.21)

Equation (5.19) describes the particle radial velocity, originating only from the
streamwise fluid velocity fluctuation and as a result of the particle–particle collision.
In presence of the spanwise and wall-normal fluid velocity fluctuations we have
superimposed the contribution from the streamwise component with that which
originates from the other two and compared it with the simulation in figure 23.
The theoretical distribution function equation (5.16) is compared with the results of
fluctuating-force simulation in figure 24. It is clear that the asymptotic form (5.16)
shows a slower decay than the distribution function in the simulations, for two
reasons. Firstly, the turbulent diffusion in the cross-stream and spanwise directions
are neglected in the derivation of (5.16); this could account for the rapid initial decay
in the simulation results in figure 24. Secondly, the ratio of the viscous relaxation
time and the particle–wall collision time is only between 2 and 3 in these simulations.
Nevertheless, it is clear that the high-velocity decay in the simulations is slower than
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Figure 24. The radial velocity distribution of the particle obtained from the simulation and
theory. Simulation, (τv < τcpp

), run 1 (—); simulation, (τv < τcpw
), run 7 (−−), and theory

(−.−) and the Gaussian distribution (· · ·). The theoretical results for both the cases are very
much similar. The descriptions of run 1 and run 7 are in table 1.

the Gaussian distribution, and the trends in the high-velocity decay are correctly
predicted by the theory. Even though the theoretical agreement is not very good, the
derivation is exact in the limit in which it was derived, similar to the derivation of
Kumaran & Koch (1993a) and Tsao & Koch (1995). Such asymptotic calculations
of far-from-Gaussian distributions in non-equilibrium systems are rare. In future, we
intend to carry out simulations with much larger channel widths, where the viscous
relaxation time is much smaller than the collision time, in order to validate the
theoretical results.

5.2. Collision time smaller than the viscous relaxation time

In the regime in which the particle collision time is small compared with the
viscous relaxation time, one might intuitively expect that the collision integral in
the Boltzmann equation can be set equal to zero in the leading approximation, and
the leading-order distribution function is a Maxwell–Boltzmann distribution. The
temperature of the distribution function is set by a balance between the production
of energy (because of the turbulent fluid velocity fluctuations or because of mean
shear) and the dissipation because of mean drag. The correction to the distribution
function because of mean shear has already been evaluated in the standard Chapman–
Enskog calculation of the viscosity of a dilute gas, while the correction because of
turbulent fluctuations would be given by a simple energy balance equation where the
source of fluctuations because of turbulent fluctuations is balanced by the dissipation
because of viscous drag. However, the present simulations do not fall in this regime
for two reasons:

(a) The first is that the time between wall collisions is smaller than that between
the particle–particle collisions in runs 10–16 in table 1. This implies that the Knudsen
number, which is the ratio of the mean free path and the macroscopic scale, is
larger than 1. There have been previous studies of a sheared granular flow in the
high-Knudsen-number regime (Kumaran 1997; Kumaran 2006b), but the source of
shear in these studies is the transfer of momentum from the wall to the particle
because of friction. This frictional source is not included in the present analysis, and
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τv n(Txy + Tyy + Tzz )/3 τv(Dxy + Dyy + Dzz )/3 Txy τvDxy

509.3 0.719 0.164 −0.249 −0.093
679.0 0.589 0.123 −0.196 −0.070
848.8 0.512 0.098 −0.161 −0.056

1018.5 0.438 0.082 −0.137 −0.047
1358.0 0.348 0.061 −0.104 −0.035
1697.5 0.296 0.047 −0.084 −0.027
2037.0 0.260 0.041 −0.071 −0.023

Table 4. The second moment of the particle velocity fluctuation (particle temperature)
obtained from the simulation and estimated from the fluid phase velocity fluctuation.

so the results are not directly comparable with studies on granular materials in the
Knudsen regime. However, a common result for both smooth and rough particles
is that the standard expression for the strain rate of a dilute low-Knudsen-number
gas significantly overestimates the stress in the high-Knudsen-number regime. The
ratio of the actual stress and the stress obtained from Newton’s law of viscosity
in the high-Knudsen-number limit scales as (φL/d)3 log (φL/d) for smooth particles,
whereas it depends on the details of the collision law for rough particles. In our
analysis, this ratio is small, in the range 10−5–10−6.

(b) In addition, Newton’s law for viscosity will be valid only when the particle
fluctuating velocity is large compared with the product of the strain rate and the
mean free path. In our simulations, we find that (γ̇ λ/T 1/2) ∼ (γ̇ d/φT 1/2) is typically
large, with a value in the range 10–100. Therefore, the motion of the particles is not
similar to that in a dilute gas of molecules.
Further work needs to be carried out to model the stress in the high-Knudsen-number
regime with turbulent velocity fluctuations.

In table 4 we examine whether the turbulent fluctuations could induce the particle
velocity fluctuations in the centre of the channel. It is clear that the expected mean
square velocity because of fluid turbulent fluctuations is smaller than the actual mean
square velocity, though they differ only by a factor between two and five. Therefore,
it is clear that the turbulent fluctuations in the centre region of the channel alone
are not sufficient to account for the particle velocity fluctuations. It is possible that
the larger value of the particle velocity fluctuations could be due to the transport of
particles across the channel and the higher turbulent velocity fluctuations near the
wall in the high-Knudsen-number regime. However, the turbulent diffusion model
does give the correct magnitude of the particle mean square velocities.

6. Summary and conclusion
A Langevin model has been formulated for including the effect of turbulent velocity

fluctuations on the particles in a turbulent gas–solid suspension, in the regime in which
the viscous relaxation time of the particles and the time between collisions are large
compared with the integral time scale for the fluid velocity fluctuations. Advantage
has been taken of the time scale separation to treat the effect of turbulent velocity
fluctuations as a Gaussian random noise acting on the particle phase, in addition to
the drag force exerted because of the difference between the particle velocity and the
fluid mean velocity. The analysis of the DNS of a turbulent gas–solid suspension in
part 1 of the current paper (Goswami & Kumaran 2010) showed that the probability
distribution for the acceleration on the particles is a Gaussian distribution, even when
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the probability distribution for the particle velocity is not a Gaussian. In addition,
the acceleration distribution was calculated in two ways: the first was to calculate the
acceleration distribution function on the particles, and the second was to calculate
the acceleration distribution from the distribution of the fluid fluctuating velocity in
the absence of the particles. The two were found to be in quantitative agreement. This
motivated the present modelling effort, where we have imposed a fluctuating force in
a particle simulation to represent the effect of the turbulence. The force is assumed
to be a Gaussian white noise which is anisotropic and spatially varying. The second
moment of the force is determined from the fluid velocity fluctuations in a direct
simulation without particles. The results of this simulation were compared with the
result of a complete DNS.

The comparison shows, clearly, that the fluctuating-force model is a good model for
representing the turbulent fluctuations, provided the particle viscous relaxation time
is greater than about five times the fluid integral time. There is quantitative agreement
for the concentration and mean velocity profiles, as well as for the variation of the
mean square velocities across the channel. The fluctuating-force model also correctly
predicts the velocity distribution function of the particles, even in cases in which the
distribution function is very different from a Gaussian distribution. We find that the
fluctuating-force model is in error when the viscous relaxation time of the particles
is less than about five times the integral time scale. However, when (τv/τf ) is greater
than about 5, we are able to obtain quantitative agreement between the fluctuating-
force model and complete DNSs. It should be noted that the second moment of the
fluctuating force used here is a function of the cross-stream direction, in contrast
with the usual Brownian models which assume a uniform fluctuating force. Using
this inhomogeneous fluctuation force, we were able to capture the variation of all
dynamical quantities up to the wall of the channel, in addition to the mean square
velocity fluctuations in the central region of the channel, where the fluid mean square
velocities are nearly a constant. Thus, this is a promising method for including the
fluid turbulent velocity fluctuations in a particle simulation even when the flow is
inhomogeneous and spatially varying.

It should be noted that all of the above results have been obtained for the very
limited case in which there is no effect of the particles on the turbulent flow (one-way
coupling). This was done as a first step, before focusing the more complicated problem
of two-way coupling, where the particles exert a force on the fluid. Future work will
focus on carrying out a similar study for the problem with two-way coupling and will
examine whether the acceleration distribution can be well represented as a Gaussian
random noise in that case as well. In addition, the variation in the mean square
velocities across the channel in a Couette flow is lower than that in flows of practical
interest, such as the pressure-driven flow in a channel. In the latter case, there is a
large variation in the streamwise mean square velocity of the fluid across the channel,
and it is of interest to examine whether the present model works for situations with
large spatial variations in the fluid velocity fluctuations.

The magnitudes of the velocity fluctuations generated in the centre of the Couette
were analysed in detail. In the limit in which the viscous relaxation time is small
compared with the time between collisions, the streamwise velocity distribution is
still found to be a Gaussian, but the cross-stream distributions contain long tails. We
examined three mechanisms for the generation of the streamwise velocity fluctuations
in this limit. The particle mean square velocity because of the turbulent fluctuations
in the streamwise direction scaled as Dxxτv . A second mechanism for the generation
of streamwise fluctuations was the cross-stream turbulent fluid velocity fluctuations
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resulting in the particles moving across streamlines. Since the mean particle velocity
varies with position, the cross-stream motion of the particles generates a fluctuating
velocity in the streamwise direction. The mean square velocity because of this
mechanism was found to be O(DyyτvSt2

γ , where Stγ = τvγ̇ is the Stokes number based
on the mean strain rate and the particle relaxation time. A third mechanism was the
collisions between particles on adjacent streamlines moving with mean velocities of
O(dγ̇ ), where d is the particle diameter. The mean square velocity because of this
mechanism is O(φSt3

γ (dγ̇ )2). By evaluating the magnitudes of the expected velocity
from these three mechanisms, it was found that the contribution because of the
collisions between particles on adjacent streamlines is small compared with the other
two mechanisms. The mean square velocity is well predicted by a linear combination
of the velocities because of streamwise and cross-stream diffusion.

The mechanisms for the generation of the particle velocity fluctuations in the
cross-stream direction was also examined. One mechanism is the cross-stream fluid
velocity fluctuations, and the mean square fluid velocity fluctuations because of this
is O(Dyyτv). The second is due to collisions between particles travelling on nearby
streamlines because of the difference in mean velocity. The post-collisional cross-
stream velocity in a collision is O(dγ̇ ), and the mean square velocity in the cross-
stream direction because of this mechanism is O(φ(dγ̇ )2Stγ ). The third mechanism is
collisions induced by the streamwise velocity fluctuations. The post-collision velocity
generated because of this mechanism is O(

√
Txx ), where Txx is the mean square velocity

in the streamwise direction, and the mean square velocity owing to this mechanism
scales as O(nd2T1/2

xx τv)Txx ∼ φ(
√

Txxτv/d)Txx . By examining these three mechanisms, it
was found that the collisions because of the streamwise velocity fluctuations result
in the high-velocity tails in the cross-stream velocity fluctuations, while the low-
velocity fluctuations are due to the cross-stream turbulent velocity fluctuations. The
distribution function for the cross-stream velocity because of collisions induced by
the streamwise velocity fluctuations was derived analytically, and the results showed
a slow decay of the velocity distribution function at high velocities, in qualitative
agreement with the simulation results.

When the time between collisions is small compared with the viscous relaxation
time, the particle velocity fluctuations are expected to be nearly isotropic and well
described by Gaussian distributions. However, the Knudsen number is typically larger
than 1 in our simulations, and the assumption of local rheology will fail in this limit.
It is known that Newton’s law for viscosity overestimates the viscous stress in the
high-Knudsen-number regime for granular flows. Our results show that the particle
velocity fluctuations in the centre of the channel are larger than what would be
expected if the particles were driven by the turbulent velocity fluctuations alone.
This could be because of the motion of particles across the channel, because the
fluctuations are larger near the wall than at the centre of the channel.
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