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We study the dynamical properties of the homogeneous shear flow of inelastic
dumbbells in two dimensions as a first step towards examining the effect of shape
on the properties of flowing granular materials. The dumbbells are modelled as
smooth fused disks characterized by the ratio of the distance between centres (L)
and the disk diameter (D), with an aspect ratio (L/D) varying between 0 and 1 in
our simulations. Area fractions studied are in the range 0.1–0.7, while coefficients
of normal restitution (en) from 0.99 to 0.7 are considered. The simulations use
a modified form of the event-driven methodology for circular disks. The average
orientation is characterized by an order parameter S, which varies between 0 (for a
perfectly disordered fluid) and 1 (for a fluid with the axes of all dumbbells in the same
direction). We investigate power-law fits of S as a function of (L/D) and (1 − e2

n).
There is a gradual increase in ordering as the area fraction is increased, as the aspect
ratio is increased or as the coefficient of restitution is decreased. The order parameter
has a maximum value of about 0.5 for the highest area fraction and lowest coefficient
of restitution considered here. The mean energy of the velocity fluctuations in the
flow direction is higher than that in the gradient direction and the rotational energy,
though the difference decreases as the area fraction increases, due to the efficient
collisional transfer of energy between the three directions. The distributions of the
translational and rotational velocities are Gaussian to a very good approximation.
The pressure is found to be remarkably independent of the coefficient of restitution.
The pressure and dissipation rate show relatively little variation when scaled by the
collision frequency for all the area fractions studied here, indicating that the collision
frequency determines the momentum transport and energy dissipation, even at the
lowest area fractions studied here. The mean angular velocity of the particles is equal
to half the vorticity at low area fractions, but the magnitude systematically decreases
to less than half the vorticity as the area fraction is increased, even though the stress
tensor is symmetric.
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1. Introduction
In the flowing state, granular materials form an important class of non-equilibrium-

driven systems in which energy is dissipated in inelastic particle interactions. Since the
grains are of macroscopic size, the energy due to thermal fluctuations is vanishingly
small. Therefore, the grains can be maintained in a fluidized state only if there is a
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continuous source of energy. One possible mechanism of energy production, which is
studied in this paper, is internal production of energy due to mean shear. A balance
between shear production and inelastic dissipation creates a homogeneous steady
state, where the volume fraction and the granular ‘temperature’ are constant, and the
velocity profile is linear. Unlike the case of granular materials driven by vibration at
the boundaries, the steady state created in this manner is homogeneous and spatially
uniform, and is therefore more amenable to detailed statistical analysis. Shear-driven
flows are also encountered in practical applications such as rock slides and avalanches
in geophysical applications, and chute flows in industrial applications.

Most experimental and theoretical studies of granular materials have considered
systems composed of spherical particles, primarily because they are simpler than
non-spherical ones. However, in real applications, asphericity is always present to
some degree; it can be slight, as in the small asperities of steel balls, or large, as
in grains of rice. An open issue is whether it is possible to apply granular flow
theories constructed for spherical particles to real systems, since the theories do not
incorporate the orientational degrees of freedom present in aspherical particles. Here,
our objective is to examine the effect of shape on the dynamical properties of flows
of two-dimensional dumbbells, which are a simple example of non-spherical particles.
The dumbbells consist of two fused disks with their centres separated by distances
upto one sphere diameter. We use a hard-particle model, where the pair potential is
infinite when particles overlap, and zero otherwise. In this model, particles interact
via instantaneous collisions, and since the collision time is zero, the probability of
simultaneous three-particle interactions is vanishingly small compared to that of
binary collisions.

It should be noted that the hard-particle collision model is an approximation,
which is valid when the duration of an interaction is small compared to the time
between successive particle interactions. Real particles have a finite stiffness, which
results in deformation upon impact. These are usually modelled by linear or Hertzian
spring–dashpots (Cundall & Strack 1979), in which the spring constant depends on
the elasticity modulus and the size of the particles. The Hertzian model is suitable
for smooth particles, since it accounts for the increase in the area of contact upon
deformation. However, recent experiments (Cole & Peters 2007, 2008) have shown
that the linear model is suitable for particles with asperities, where the initial resistive
force is due to the compression of asperities. The spring constant for sand particles
is in the range of kn = 0.2–2 × 106 Nm in the experiments; similar magnitudes can be
expected for other types of particles such as glass beads or rice grains. The time of a
collision can be estimated as τc =(1/

√
kn/m), where m is the mass of a particle. For

particles with kn =106 Nm, an effective diameter of the order of 1 mm and density
2500 kgm−3 (e.g. sand), we estimate the period of a collision τc ∼ 10−4 s. In a shear
flow, the flow time scale is the inverse of the strain rate γ̇ −1, and the time between
interactions can be estimated as γ̇ −1, which is roughly the time taken for two particles
separated by one particle diameter in the gradient direction to pass each other. A
comparison of these two indicates that the binary collision approximation is valid for
γ̇ � 104 s−1 for moderately dense systems. The above estimation will fail at very high
densities near the jamming limit, where a pair of particles collide many times within
the time taken to translate past each other, but is valid for the low and moderately
high densities considered here.

Since the time period of a collision is much smaller than the strain rates of interest
in real granular flows, it is preferable to use an event-driven (ED) algorithm for hard
particles, where the collisions are treated as instantaneous events. It is not efficient to
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use molecular dynamics simulations where the particle stiffness kn is made sufficiently
high. This is because the time period of an interaction, which is proportional to
(1/

√
kn/m), decreases as the spring stiffness increases. Since the time step in the

simulation has to be small compared to the period of interaction, this increases the
computation time significantly in force-based molecular dynamics simulations. For
this reason, an ED simulation procedure is used in the present analysis.

Some simulation and experimental studies have examined the dynamics of dense
systems of non-spherical particles contained in cylinders under vertical or horizontal
vibration (Villarruel et al. 2000; Lumay & Vandewalle 2004). Stokely, Diacou &
Franklin (2003) investigated the two-dimensional packing of extremely prolate
(aspect ratio L/D =10) granular materials, comparing experiments with Monte Carlo
simulations. A density-dependent nematic- to smectic-like transition was observed
for vibrated granular rods (Blair, Neicu & Kudrolli 2003). Also, a density-dependent
isotropic–nematic transition, consistent with theory and simulation, has been found for
vibrated rod-shaped granular materials confined to quasi-two-dimensional containers
(Galanis et al. 2006). Narayan, Ramaswamy & Menon (2007) presented experimental
evidence for giant number fluctuations in a monolayer of fluidized rods, although
similar behaviour has also been observed in systems of spherical particles (Aranson
et al. 2008). All of these studies were carried out in boundary-driven systems, where
the energy supply is due to vibration at the boundaries.

There have been some studies related to the simulations of granular flows of non-
spherical particles, mostly using the soft-particle discrete-element method (DEM)
developed by Cundall & Strack (1979). Here, the particles are allowed to overlap
slightly, and the inter-particle force is a function of the distance of overlap between
the particles. Gallas & Sokolowski (1993) and Bertrand, Leclaire & Levecque (2005)
formulated a model where a non-spherical particle is replaced by a collection of
spherical particles. Cleary & Sawley (2002) and Langston et al. (2004) developed
a computation procedure for determining contact between the two given irregular
shaped particles, but this was found to be computationally expensive. More references
related to the contact force models of non-spherical particles can be found in Zhu
et al. (2007). There are some studies (Poschel & Buchholtz 1995; Matuttis 1998) on
the simulation of dense granular systems of non-spherical particles by describing
overlapping particles with continuous interactions. Cleary (2008) studied the dense
shear flow of non-spherical particles in a Couette cell using soft-particle DEM
simulations in the volume-fraction regime where there is continuous contact between
the particles. He observed inhomogeneities in the volume fraction, the mean velocity
and the granular temperature profiles, depending on the types of boundary conditions
used at the walls, and shear localization. He also found that the shear modulus depends
sensitively on shape. Pena, Garcia-Rojo & Herrmann (2007) studied, using soft-
particle simulations, dense flows of polygonal particles with varying shapes subjected
to shear. The particles are in continuous contact in these simulations, and the contact
orientating for the transmission of stress is mainly governed by the orientation of the
particles in the case of elongated particles. At large shear deformation, samples with
elongated particles, independent of their initial orientation, reach the same stationary
value for both shear force and void ratio. These studies showed that shear is localized
in shear bands whose width depends on the particle shape.

In a previous paper, we (Reddy, Kumaran & Talbot 2009) studied a system in the
opposite limit where there is instantaneous contact between particles under a carefully
controlled shear flow generated using Lees–Edwards boundary conditions (Lees &
Edwards 1992). In this system, the density and temperature are constant and the mean
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velocity is a linear function of the coordinate in the gradient direction. We examined
the orientational ordering in relation to the known behaviour of equilibrium systems
composed of hard anisotropic particles. We quantified the ordering with an order
parameter S that is equal to 1 in a perfectly orientationally ordered system and 0 in
an infinite system with randomly orientated particles. We observed that S increases
‘continuously’ from small values to about 0.5 as the packing fraction is increased or
the coefficient of restitution is decreased. We verified that the continuous increase is
not simply an artifact of small system sizes by performing simulations using up to
four times more particles.

The principal orientation direction, θp , was determined from the eigenvector of the
orientation matrix, whose corresponding eigenvalue is S. Although there are relatively
large error bars on θp at low packing fraction, it is clear that the particles are orienting
along the extensional direction. At higher packing fractions, the particles tend to
orient closer to the flow direction: the highest packing fraction studied θp ≈ π/8. We
also computed the orientational distribution function, P (θ), for a range of systems
parameters. Except at the highest packing fraction, this function is well described by
a truncated Fourier expansion: P (θ) = 1/π + (2S/π) cos(2(θ − θp)).

In this paper, we provide further analysis of the orientational-order parameter
and examine the dynamical properties of the systems and how they are affected by
the alignment. The stresses and dissipation rate have a definite dependence on the
strain rate due to the requirements of dimensional consistency. Since particle contacts
are instantaneous, there is no material time scale in the system. Therefore, all time
dimensions can be scaled by the inverse of the strain rate, and the strain rate can
be set equal to 1 without loss of generality. From dimensional considerations, all
components of the stress are proportional to the square of the strain rate (Bagnold
law), and the dissipation rate scales as the cube of the strain rate.

The fluctuating velocities of the particles (granular temperature) are linked to
the strain rate through the energy-balance condition, and the ratio of the strain
rate and the square root of the granular temperature is related to the coefficients
of restitution. The average orientation and the probability distribution of particle
orientations depend only on the area fraction, the aspect ratio and the coefficient of
restitution. We examine the dependence of the orientation on these parameters, and
also the effect of aspect ratio on the Bagnold coefficients (ratio of stress and square
of strain rate) and the dissipation rate. The simulation methodology is discussed
in § 2, and the results for the orientation distribution, velocity and angular velocity
distributions and stresses are reported in § 3. The results are briefly summarized
in § 4.

2. Collision model and simulation methodology
Granular flows of hard spherical particles (particles in which the pair potential

is infinite when there is overlap, and zero otherwise) have been simulated by the
ED method. The ED method is used to simulate instantaneous collisions between
hard particles, where the simulation proceeds in discrete collision events, instead of
the fixed time intervals used in molecular dynamics for molecules with continuous
potentials.

We employ the method of retrospective collision detection first proposed by
Rebertus & Sando (1977). The method works by attempting to advance the
configuration from t to t + �t in the following way. The position and orientation
of each particle are updated from their values at t to time t + �t , as though no
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other particles were present. At the end of this step, overlaps between one or several
pairs of particles may be present. (Of course, if overlaps are detected, in the actual
dynamics collisions would have occurred somewhere between t and t +�t.) For each
overlapping pair, the collision equation is solved to find the time of collision. A list
of these times is sorted in chronological order and secondary collisions are removed
(for example, if particle i collides with particle j and then subsequently with k, the
collision pair (i, k) is deleted from the list). For each remaining pair in the collision list,
the program rewinds the position and orientation to the point of impact, implements
the collision dynamics by calculating the post-collisional translational and angular
velocities of each colliding particle and then advances the pair to the time t + �t . Of
course, the final configuration is invalid if overlaps are present in the system at time
t+�t . If this condition applies, the attempt is abandoned and the configuration is reset
to its state at t . The time interval is then reduced to �t/2 and the above procedure
is repeated. If there is no overlap at t + �t/2, the program attempts to advance the
configuration from t +�t/2 to t +�t . If the new attempt to advance the configuration
is unsuccessful, the time step is halved again, and so on. In this way, the program
incorporates all collisions in the correct sequence (with the possible exception of a
few grazing collisions that may be missed if the particles are highly anisotropic). The
complicated (although not very time-consuming) part consists of handling multiple
overlaps and resolving sequences of (possibly) inter-dependent collisions occurring
within a very short time of each other.

For the algorithm to function efficiently, �t must be well chosen: not too small
so that the system evolves too slowly and not too large so that collisions cannot be
resolved unambiguously or are missed. In fact, the algorithm is remarkably robust for
the current system. It works for a wide range of packing fractions (0.1 � φ � 0.7) and
geometries (0 � L/D � 1). More details on the simulation procedure can be found in
Allen, Frenkel & Talbot (1989).

The inelastic hard-disk model has been used extensively for spherical particles with
a constant coefficient of restitution. We extended the collision equations to inelastic
non-spherical particles as follows. Consider two dumbbells with linear velocities v1,
v2 and angular velocities ω1, ω2. Then, the total pre-collisional relative velocity at
contact is

g12 = v12 + ω1 × rc1 − ω2 × rc2, (2.1)

where v12 = v1 − v2. During collision, the components of g12 change such that

(n · g′
12) = −en(n · g12)

(I − nn) · g′
12 = (I − nn) · g12,

where n is the unit vector along the centreline of the two sphere segments in the
dumbbell that are colliding and primed quantities denote values after collision.
The parameter en is the normal coefficients of restitution. The linear and angular
momentum change of the two particles in a collision can be written as,

p′
1 = p1 + � p

p′
2 = p2 − � p

J ′
1 = J1 + rc1 × � p

J ′
2 = J2 − rc2 × � p,
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where

�p =
−(1 + en)g12 · n

2/m + (rc1 × n)2/I + (rc2 × n)2/I
, (2.2)

where I is the moment of inertia and � p = n�p. The case en =1 corresponds to
perfectly smooth elastic particles, where the component of the relative velocity along
the line joining the centres of the particles is reversed in a collision. The kinetic energy
of the particles is unchanged in a collision for en =1, while there is a dissipation of
energy for en < 1. In a steady shear flow, there is a production of energy due to
the mean shear, and a system of elastic particles will heat up because there is no
energy dissipation. A steady state is usually generated by applying a thermostat on
the system. In a granular fluid, there is energy dissipation due to inelastic collisions,
and a steady state is generated where there is a balance between the shear production
and the dissipation due to inelastic collisions.

We generate homogeneously sheared inelastic hard dumbbell configurations with a
particular L/D ratio, where L is the distance between the centres of the fused disks
of a dumbbell and D is the diameter of the disk, using the Lees–Edwards boundary
conditions (Lees & Edwards 1972). The simulation box dimensions, lx and ly , are
both are of unit length. In our simulation geometry, x and y are the velocity and
velocity-gradient directions, respectively. The top and the bottom boxes move with
velocities +U and −U, respectively, with respect to the central box. When a particle
crosses the top/bottom boundary of the central box with a horizontal velocity vx , its
image enters through the bottom/top with a horizontal velocity (vx)image = vx ∓U . This
induces shear at the top/bottom boundaries of the central box, which then propagates
by collisions into the central box. For most of the results reported here, the number
of dumbbells used is 216; however, we have checked system-size dependence by
carrying out some simulations with four times the box size and 864 dumbbells, and
find no significant variation between the larger and smaller systems. The dumbbell
configuration and snapshots of the simulation box at different area fractions are
shown in figures 1 and 2, respectively.

If the system is homogeneously sheared, a linear-velocity profile with a shear rate
vx =(γ̇ y) is expected to be induced in the central box, and the area fraction, the
angular velocity and the stress tensor are expected to be constant. These dynamical
variables are extracted by dividing the channel into 10 bins of equal width and
averaging over all the particles within one bin. With this procedure, we average over
500 realizations for the average value for each bin, and each bin contains about 20
particles on average. Therefore, the averages are calculated over approximately 104

particles for each data point across the channel. In the simulations, we find a constant
area fraction and a linear mean-velocity profile to a very good approximation, as
shown in figure 3 for (L/D) = 1.0, en = 0.8 and for two different values of the area
fraction. All the components of the stress tensor are also found to be a constant
across the channel. There is a larger variation in the mean angular velocity across the
channel, as observed in figure 3, and the variation has a maximum of about 20 %
for φ = 0.1. This type of variation in the angular velocity was observed for all the
simulations carried out here, and the variation increased as en → 1. This increase in
the variation of the angular velocity is for the following reason. Since the temperature
scales as (γ̇ 2D2/(1 − e2

n)) from energy balance, the ratio of the magnitude of the
velocity fluctuations and the local strain rate increases. In a similar manner, the ratio
of the angular velocity fluctuations and the average angular velocity also increases,
and the relatively small value of the average angular velocity is obtained by averaging



Sheared inelastic dumbbells 481

y
u(y) = γy

L

θ

x

Figure 1. (Colour online) A dumbbell consists of two fused disks of diameter D with centres
separated by a distance L. The Lees–Edwards boundary conditions induce a uniform shear in
the sense shown. The orientation of the dumbbell with respect to the x -axis is denoted by θ .

over large fluctuating velocities. This results in poorer statistics for the angular velocity
distributions. Surprisingly, we find that even when there are fluctuations in the angular
velocity across the simulation cell, the mean velocity is very close to a linear-velocity
profile and the stresses are constant. Therefore, when we report results for the angular
velocity, we take care to show the error bars of width equal to two times the standard
deviation of the angular velocity across the channel. Error bars are not reported for
the stresses and the granular temperature, because these are numerically small.

3. Results and discussion
3.1. Orientational order

We define the orientation vector ui of a particle ith as the unit vector in the direction
of the line joining the centres of the two fused disks. The orientational order in the
system was investigated using the matrix,

Qαβ =
1

N

〈
N∑

i=1

(2uαiuβi − δαβ)

〉
, (3.1)

where uαi denotes the component α of the unit vector specifying the direction of
the ith dumbbell and the subscript α = x, y is used to denote vector directions. The
angular brackets in (3.1) denote an average over a (large) number of configurations
at equally spaced time intervals.

There are two orientational measures, which emerge from the matrix Qαβ: the first
is the degree of alignment S, and the second is the principal axis of alignment. The
matrix Q has two eigenvalues, of which the largest, S, is the order parameter. In
a perfectly orientationally ordered system S = 1, while in the isotropic phase (for
an infinite system) S = 0. The matrix Qαβ also has two eigenvectors, which give the
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(a) (b)

(d)(c)

Figure 2. (Colour online) Snapshot of dumbbells at area fractions of (a) and (c) 0.4, and (b)
and (d ) 0.8. (a) and (b) The space-filling representation, while (c) and (d ) the orientations.

principal axes of orientation. The eigenvector corresponding to the eigenvalue S is
major principal axis, which is the direction along which the probability distribution
of the orientation angles is a maximum.

In our simulations, each data point is obtained by averaging over 500 realizations of
the system with 216 particles. Therefore, we average over approximately 105 samples.
Using the central limit theorem, it can easily be inferred that the statistical error in
the results for the order parameter is of the order of 3 × 10−3. Therefore, we take care
to analyse results only where the order parameter is greater than about 0.01, since
order parameter values below this could be affected by sampling errors.

First we examine the order parameter as a function of area fraction for different
L/D ratios. The order parameter is shown in figure 4 as a function of area fraction
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Figure 3. The average velocity v∗
x = (vx/γ̇ ly) (�), the scaled area fraction φ∗ = (φ/φ̄) (�), the

scaled angular velocity ω∗ = (ω/ω̄) (�), the scaled components of the stress σ ∗
xx = (σxx/σ̄xx) (�),

σ ∗
yy =(σyy/σ̄yy) (�) and σ ∗

zz = (σzz/σ̄zz)(�), as a function of distance across the channel y∗ =
(y/ly) for (L/D) = 1, en = 0.8 and for average area fraction φ = 0.1 (a) and φ = 0.7 (b). Here,
ly is the height of the simulation box, which has been divided into 10 equal bins, and the over
bars represent averages over the entire box. The dashed line shows the expected linear-velocity
profile v∗

x = (y/ly).
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Figure 4. The order parameter S versus area fraction φ for (L/D) = 0.25 (dashed lines) and
(L/D) = 1.0 (solid lines), and for coefficients of restitution en = 0.7 (�), en = 0.8 (�), en = 0.9
(�), en = 0.95 (�) and en = 0.98 (�).
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Figure 5. The order parameter S versus (L/D) (a) for φ = 0.3 (dotted lines), φ = 0.5 (dashed
lines) and φ = 0.7 (solid lines); and (b) the best-fit parameters A (open symbols) and α
(filled symbols) in (3.2), and ELD + 1 (symbols with superscribed plus) as a function of φ.
The coefficients of restitution are en = 0.95 (�), en = 0.9 (�), en = 0.8 (�), en = 0.7 (�) and
en = 0.6 (�), and only results for en = 0.9 and en = 0.7 are shown in (a) for clarity.

for three different values of (L/D) and for different coefficients of restitution. An
important result is that there is an increase in the ordering as the area fraction is
increased or the coefficient of restitution is decreased, but the change is continuous.
This is in contrast to a phase transition, where there is a discontinuous change in the
order parameter. In order to ensure that the continuous increase is not an artifact
of the finite system size (a first-order transition in a system of infinite extent could
appear continuous in a finite size system), we have increased the system size by a
factor of 4, and found that there is a change of less than 1 % in the value of S.

The increase in ordering with area fraction is easy to understand on the basis of
packing constraints. Figure 4 shows that the order parameter increases as the square
of the area fraction in the limit of low area fractions. (We have not included the data
for (L/D) = 0.005 in figure 4 because the order parameter goes below 0.01 in the
low-area-fraction limit, and the results there could be affected by errors due to finite
sample size.) This is physically understandable, since we would expect the ordering
to be induced by the biasing of binary collisions due to the mean shear in the limit
of low area fraction; since the collisions frequency is proportional to φ2 in the low-
area-fraction limit φ → 0, we expect the order parameter also to be proportional to
φ2 in this limit.

The increase in ordering with the aspect ratio (L/D) is shown in figure 5(a). It
is observed that the ordering increases as the aspect ratio increases. In the previous
paper (Reddy et al. 2009), we assumed a linear dependence of S on L/D. Here, we
examine a more general power-law form:

S = A(L/D)α. (3.2)

The values of A and α are shown as a function of area fraction φ and en in figure 5(b).
The best fits obtained using an equation of the form (3.2) are shown by the lines
in figure 5(a). It is observed that α is close to 1 at relatively low area fractions,
indicating that the order parameter is roughly proportional to (L/D). However, as
the area fraction increases, the order parameter shows a slower increase with (L/D).
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Figure 6. (a) The order parameter S as a function of (1 − e2
n)

1/2 for (L/D) = 0.25 (�) and
(L/D) = 1.0 (�) (filled symbols) and for packing fraction φ = 0.3 (solid line), φ = 0.5 (dashed
line) and φ = 0.7 (dotted line). The lines in (a) shows the best fits to (3.4), while the parameters
B , β and Een + 1 are shown as a function of φ in (b) for (L/D) = 0.25 (�), (L/D) = 0.5 (�),
(L/D) = 0.75 (�) and (L/D) = 1.0 (�).

It should be noted that even at the highest area fractions and aspect ratios analysed
here, the orientational order parameter has a maximum of about 0.5, far below the
value of 1.0 for a perfectly aligned collection of rods.

Figure 5(b) also shows the standard deviation between the simulation result for S

and the power-law fit 3.2, ELD , which is defined as,

ELD =

√√√√√√√
∑
(L/D)

(S − A(L/D)α)2

∑
(L/D)

S
, (3.3)

where the summation in the above equation is carried out for (L/D) = 0.25, 0.5, 0.75
and 1.0. Figure 5(b) shows ELD + 1, in order to separate the standard deviation from
the results for α. It is observed that ELD increases nearly linearly with area fraction,
and it increases as the coefficient of restitution is decreased. The maximum value of
ELD is about 0.25 and the higher area fraction of 0.7.

The variation of the order parameter with the coefficient of restitution is shown in
figure 6(a). The increase in ordering with inelasticity can be understood as follows. For
a steady shear flow, there is a balance between the rate of production of fluctuating
energy due to mean shear and the rate of dissipation due to inelastic collisions. We
denote the mean square of the velocity fluctuations as T , the analogue of the granular
temperature (the particle mass can be set equal to 1 without loss of generality). The
rate of production of energy is proportional to the viscosity times square of the shear
rate. For a fluid of hard particles, the viscosity is (T 1/2/D) times a function of area
fraction and aspect ratio. Therefore, the rate of production of fluctuating energy per
unit area is (T 1/2γ̇ 2/D). The rate of dissipation is proportional to ((1 − e2

n)T
3/2/D3)

times a function of the area fraction and aspect ratio, since the energy lost in a
collision is (1 − e2

n)T and the collision frequency per unit area is (T 1/2/D3). A balance
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between these two indicates that T ∼ (Dγ̇ /(1 − e2
n)

1/2)2 times a function of the area
fraction and aspect ratio. Therefore, if we vary coefficient of restitution at constant
area fraction and aspect ratio, the fluctuating velocity decreases at constant shear
rate. Since velocity fluctuations tend to randomize the system, whereas the mean shear
tends to align particles in the flow direction, a decrease in the coefficient of restitution
increases ordering in the system.

The variation of the order parameter with the coefficient of restitution for different
aspect ratios and area fractions is shown in figure 6(a). An interesting feature
of figure 6(a) is that the order parameter decreases to zero for en → 1. Since the
rate of shear production and inelastic dissipation are equal at steady state, and
γ̇ =((1 − e2

n)T/D2)1/2, the limit en → 1 corresponds to an elastic system with no shear.
In this case, figure 6(a) shows that there is no orientational ordering. Therefore, for all
the (L/D) ratios and area fractions studied here, there is no spontaneous symmetry
breaking and order/disorder transition in the absence of shear. The increase in
ordering is only due to the imposition of a shear flow. For nearly elastic particles,
figure 6(a) shows that the order parameter increases approximately as (1−e2

n)
1/2. This

is because, as explained earlier on the basis of an energy-balance argument, the ratio
of the shear stress and the square root of temperature is proportional to (1 − e2

n)
1/2

in the limit en → 1. Since the mean shear tends to align the particles, whereas the
random fluctuations tend to increase disorder, we would expect S ∝ (1 − e2

n)
1/2 for

en → 1. We attempt to obtain a power-law fit for the order parameter of the form,

S = B
(
1 − e2

n

)β
. (3.4)

The parameters B and β for the best fits for the order parameter are shown in
figure 6(b), while the values of the order parameter obtained using a power-law fit
are shown in figure 6(a). It is observed that β ≈ 0.5 for low area fractions, as expected
from the above arguments. However, β decreases as the area fraction increases.

Figure 6(b) also shows the standard deviation between the simulation result for S

and the power-law fit (3.2), ELD , which is defined as:

Een =

√√√√√√√
∑
en

(
S − B

(
1 − e2

n

)β)2

∑
en

S
, (3.5)

where the summation in the above equation is carried out for five different values
en = 0.95, 0.9, 0.8, 0.7 and 0.6. Figure 6(b) shows Een + 1, in order to separate the
standard deviation from the results for β . It is observed that Een is numerically small
for all values of area fraction and coefficient of restitution. We conclude that the
power-law fit (3.4) is a good descriptor for the state of ordering in the system, even
for coefficients of restitution as low as 0.6.

The orientational distribution function, P (θ), as well as the principal orientation
direction, θp , are discussed in Reddy et al. (2009).

3.2. Temperature and velocity distributions

For a two-dimensional flow of non-circular particles, the temperature is defined as
T = (1/3)〈v′2

x + v′2
y + Iω′2〉, where v′

x = (vx − 〈vx〉), v′
y = vy and ω′ = (ω − 〈ω〉) are the

fluctuating velocities, 〈vx〉 is the (local) mean velocity and 〈ω〉 is the angular velocity,
which is a constant across the simulation box for a uniform shear flow. First, we
discuss the expected variation of the temperature in the limit of low area fraction



Sheared inelastic dumbbells 487

0.1 0.2 0.3 0.4 0.5 0.6 0.70 0

0.1

0.2

0.3

0.4
T
φ

2 
(1

 −
 e

2 n)

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

(T
x/

T
, T

y/
T

, T
ω

/T
)

(1 − e2
n)

0.1 0.2 0.3 0.4 0.5 0.6 0.7

(1 − e2
n)

(a) (b)

Figure 7. The scaled temperature, T φ2(1 − e2
n) (a), and the temperature anisotropy (b), as

a function of (1 − e2
n) for area fractions φ = 0.1 (�), φ = 0.3 (�), φ = 0.5 (�), φ = 0.6 (�)

and φ = 0.7 (×). (a) Solid lines: the results for (L/D) = 1.0, dashed lines: the results for
(L/D) = 0.25 and dotted lines: the results for L/D = 0.0 (disks). (b) (Tx/T ) (solid lines),
(Ty/T ) (broken lines) and (Tω/T ) (dotted lines) are shown for (L/D) = 1.0.

and nearly elastic collisions, and then present results over a range of area fractions.
In a granular flow, the temperature is determined by a balance between the rate of
production of energy due to mean shear and the rate of dissipation due to inelastic
collisions. The rate of production is proportional to µγ̇ 2, where the viscosity µ is
(T 1/2/D) times a function of en, (L/D) and the area fraction. In the limit of low area
fraction and nearly elastic collisions, the viscosity is independent of area fraction, and
so the rate of production of energy is (T 1/2γ̇ 2/D) times a function of (L/D). The rate
of dissipation of energy due to collisions between pairs of particles, in the limit of low
area fraction, is φ2(1 − e2

n)T
3/2/d2 times a function of (L/D) in the near-elastic limit

and in the limit of low area fraction. This implies that the temperature should scale
as 1/(φ2(1 − e2

n)) times a function of (L/D) in the limit φ → 0 and en → 1. Therefore,
we plot T φ2(1−e2

n) as a function of en for different area fractions and different aspect
ratios in figure 7(a). It is observed that there is very little variation in the scaled
temperature with en at low area fractions, and the scaled temperature is close to 0.1
when the area fraction is less than about 0.3. However, there is a larger variation
for area fractions greater than 0.5. One striking feature in figure 7(a) is that there
is very little dependence of the scaled temperature on the aspect ratio. The granular
temperature seems to vary only with area fraction and coefficient of restitution, and
is independent of (L/D).

The anisotropy in the granular temperature is shown in figure 7(b), where the ratios
(Tx/T ), (Ty/T ) and (Tω/T ) are shown as a function of en, where Tx = 〈v′2

x 〉, Ty = 〈v′2
y 〉

and Tω = I 〈ω′2〉. Only the results for (L/D) = 1 are shown in figure 7(b); the qualitative
results for other (L/D) ratios are similar, so we do not plot these. Figure 7(b) shows,
as expected, that the distribution of fluctuating velocities is nearly isotropic for
nearly elastic particles in the limit en → 1. In all cases, the fluctuating energy in the
translational motion in the x-direction is larger than the average fluctuating energy,
while that in the translational motion in the y-direction and in the rotational motion
are smaller than the average fluctuating energy. An interesting feature is that the
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Figure 8. The velocity distribution functions f (v′
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√
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√
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√
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Tω)(�), for en = 0.95 (open symbols) and

en = 0.7 (filled symbols), and for area fraction φ = 0.1 (a) and φ = 0.7 (b). Broken lines: the
Gaussian distribution.

anisotropy in the distribution of fluctuating velocities decreases as the area fraction
in increased, except for the highest area fraction of 0.7 studied here. This can be
attributed to steric effects; as the area fraction increases, the effectiveness of the
collisional mechanism for re-distributing the energy between the different directions
increases, and so the anisotropy in the root-mean-square velocities decreases.

The velocity distributions for the translational and rotational velocities are shown
at a low area fraction (φ =0.1) in figure 8(a), and at a relatively high area fraction
(φ = 0.7) in figure 8(b). The aspect ratio (L/D) is 1 in both cases, and results
are provided both for nearly elastic particles as well as for particles with en = 0.7.
A striking observation from these figures is that the velocity distribution is well
approximated by a Gaussian distribution in all cases, even for elongated particles
with (L/D) = 1, at both high and low area fractions, as well as for relatively inelastic
particles with en = 0.7. The distribution function is a Gaussian for the velocities in the
flow and gradient directions, as well as for the angular velocity fluctuations. We do not
see any power law or algebraic tails within the limits of resolution in the simulation,
and there is also no observable skewness or flatness in the profiles. This is likely to
result in significant simplification in the modelling of granular flows of elongated
particles, since the distribution functions for the particle-velocity fluctuations can be
well modelled by anisotropic Gaussian distributions.

3.3. Collision frequency

The collision frequency ν is of significance in a dense granular flow of hard particles,
because the transport of momentum and energy due to collisions is large compared
to that due to the streaming of particles. At low area fractions, the collision frequency
(number of collisions per particle per unit time) in a hard-particle gas is proportional
to ρD2

√
T in three dimensions, and proportional to ρD

√
T in two dimensions, where

ρ is the number density of the particles and D is the characteristic particle size, and the
fluctuating velocity is proportional to

√
T . However, as the area fraction increases, the

proportionality ν ∝ ρ
√

T is modified because of excluded area and shadowing effects,
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Figure 9. The collision frequency ν (a), and the scaled collision frequency (ν/φ
√

T ) (b), as
a function of (1 − e2

n) for (L/D) = 1.0 (solid lines) and (L/D) = 0.25 (dashed lines) and
(L/D) = 0.0 (dotted lines) for area fractions φ = 0.1 (�), φ = 0.3 (�), φ = 0.5 (�), φ = 0.6 (�)
and φ = 0.7 (×).

which are not included in the theories for dilute gases. The collision frequency in the
dense limit is usually expressed using the pair distribution function, which is effectively
the ratio of the actual collision frequency and the collision frequency predicted by
kinetic theory in the dilute limit. In the present case, the pair distribution function
is more complicated because it depends on the relative orientations of the colliding
particles in addition to their relative positions. We do not attempt to calculate the
complete pair distribution function in the present analysis, but restrict our attention
to analysing the collision frequency.

The variation of the collision frequency, scaled by the strain rate, is shown as a
function of the coefficient of restitution for different area fractions and (L/D) ratios
in figure 9(a). It is observed that the collision frequency increases as the area fraction
increases, due to the excluded area effect. When the area fraction is increased from
0.1 to 0.7, the collision frequency increases by about two orders of magnitude. The
collision frequency also increases when the aspect ratio of the particles increases
at constant area fraction and as the coefficient of restitution approaches 1. This is
because the frequency of inter-particle collisions is due to the velocity fluctuations of
the particles and the root mean square of the velocity fluctuations (square root of
the temperature) increases as (1 − e2

n)
−1/2 at constant strain rate as the coefficient

of restitution approaches 1.
An averaged pair distribution function at contact, which is averaged over the

relative orientations of the colliding particles, can be defined as the ratio of the actual
collision frequency and the collision frequency (proportional to φ

√
T ) predicted

by kinetic theory of gases. Therefore, the averaged pair distribution function is
proportional to ν/(φ

√
T ). In figure 9(b), we plot ν/(φ

√
T ) as a function of the

coefficient of restitution at different area fractions. It is observed that this function
shows very little variation with the coefficient of restitution, though it does vary as the
(L/D) ratio is changed. The variation of ν/(φ

√
T ) is shown as a function of the area

fraction for two different (L/D) values and two different coefficients of restitution in
figure 10. It is observed that ν/(φ

√
T ), which is proportional to the pair distribution
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Figure 10. The ratio ν/(φ
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T ) as a function of area fraction φ for (L/D) = 1.0 (solid lines),
(L/D) = 0.25 (dashed lines) and (L/D) = 0.0 (dotted lines), and for coefficients of restitution
en = 0.9 (�) and en = 0.7 (�).

function, increases between one and two orders of magnitude as the area fraction
is increased from 0.1 to 0.7. In the case of spherical particles, it has been reported
(Kumaran 2004, 2006, 2008, 2009a,b) that there is a significant increase in the collision
frequency scaled by the square root of temperature at high volume fractions. This is
due to correlations in the velocities of colliding particles, because of which the relative
velocity distribution is closer to an exponential distribution instead of a Gaussian
distribution for elastic particles. A similar increase is observed in the present case as
well.

3.4. Stress tensor

The stress tensor is calculated as follows by summing the tensor product of the
impulse transmitted and the distance between the centres of the dumbbells in an area
A (in two dimensions) over a time interval τ , and dividing by the time interval and
the volume:

σ =
1

τA

∑
collisions

(� p)(�x), (3.6)

where V is the total volume of the system, τ is the time interval over which the stress
tensor is calculated, � p is the impulse from (2.2) and �x is the vector displacement
between the centres of the two dumbbells (not the distance between the centres of
the two colliding disks). All components of the stress are scaled by the particle mass,
since the particle mass is considered to be 1 in the simulations. Since the stress is
a force per unit length in two dimensions, the stress does not contain any length
dimension. Since the collisions are instantaneous in the system considered here, there
is no material time scale. Therefore, all components of the stress are proportional
to γ̇ 2.

We set the strain rate equal to 1 without loss of generality, so that all time scales
are non-dimensionalized by the inverse of the strain rate. Therefore, the stress tensor
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Figure 11. The ratio of pressure and temperature (p/T ) (a) and the ratio (p/ν
√

T ) (b) as a
function of (1 − e2

n) for (L/D) = 1.0 (solid line), (L/D) = 0.25 (dashed line) and (L/D) = 0.0
(dotted line), and for area fractions φ = 0.1 (�), φ = 0.3 (�), φ = 0.5 (�), φ = 0.6 (�) and
φ = 0.7 (×).

is only a function of the aspect ratio, area fraction and coefficient of restitution. When
scaled by the square of the strain rate, the pressure diverges as en → 1. This is because
the temperature, which is proportional to γ̇ 2D2/(1−e2

n) from energy balance, diverges
for en → 1 at fixed strain rate. Therefore, it is preferable to analyse the variation of
the scaled pressure (p/T ), as shown in figure 11(a), where p = (σxx + σyy)/2, with
(1 − e2

n) for two different aspect ratios and for different area fractions. This graph
shows that the ratio of pressure and temperature is nearly independent of coefficient
of restitution over a range en = 0.99–0.7, and the ratio depends only on the aspect
ratio and the area fraction. In order to place this result in context, we note that for
a hard-particle elastic fluid, there is no intrinsic energy scale for particle interactions,
and so the pressure is a product of the temperature and a function of the area
fraction and aspect ratio. We would expect, by extension, that for the present system
of inelastic particles, the pressure would be the product of the temperature and some
function of the area fraction, aspect ratio and coefficient of restitution. Figure 11(a)
shows that this function has almost no dependence on the coefficient of restitution,
and so the equation of state (relation between temperature and pressure) for inelastic
dumbbells is numerically almost identical to that for a system of elastic dumbbells.

An averaged equation of state for the pressure as a function of the temperature can
be obtained by averaging the p/T values for different coefficients of restitution, and
then plotting this as a function of (L/D) and area fraction. This averaged equation
of state is shown as a function of area fraction for different (L/D) values in figure 12.
The ratio does show a significant increase with area fraction, especially in the limit
of high area fractions, but it does not vary much with the (L/D) for all the aspect
ratios considered here.

In the limit of high area fraction, it is more appropriate to define a scaled pressure
as p/ν

√
T . This is because the collisional mechanism is the dominant mechanism

of momentum transport, and the momentum flux is proportional to the collision
frequency and the fluctuating velocity, because the average impulse in a collision
scales as the mass times the fluctuating velocity. In figure 11(b), the ratio p/ν

√
T is
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Figure 12. The ratio of pressure and temperature p/T as a function of area fraction for
(L/D) = 1.0 (�), (L/D) = 0.75 (�), (L/D) = 0.5 (�), (L/D) = 0.25 (�) and (L/D) = 0 (×).

shown as a function of the coefficient of restitution for two different (L/D) ratios
and for different area fractions. It is clearly seen that the variation of the scaled
pressure p/ν

√
T is small compared to that of the pressure itself, especially in the

limit of high area fraction. It is seen that this ratio varies in a very narrow range,
between about 0.1 and 0.4, for all the area fractions and coefficients of restitution
considered here, even when the pressure varies by one to two orders of magnitude in
figure 11. The ratio p/(ν

√
T ) increases with area fractions for nearly elastic particles;

however, at coefficients of restitution less than about 0.8, this ratio first increases and
then decreases with area fraction. The decrease in (p/(ν

√
T )) at higher area fractions

is possibly because of ordering of particles and the decrease in the magnitude of
the mean angular velocity, as discussed a little later. It should be noted that for
non-circular particles, collisions can be induced both by the translational and the
rotational motion of the particles, and the effect of particle rotation is likely to
become more important as the particles are more densely packed. Therefore, the
collision frequency will decrease when the mean angular velocity decreases. The effect
of rotation is also more important as the aspect ratio increases. For this reason, we
observe that (p/(ν

√
T )) decreases as the aspect ratio increases as the coefficient of

restitution is decreased, where there is an increase in the orientational order parameter
and the magnitude of the mean angular velocity decreases.

The ratio of the shear stress and the pressure, σxy/p, is shown as a function of
(1 − e2

n) for different aspect ratios and area fractions in figure 13(a). This figure
shows that there is very little variation in the ratio σxy/p with either area fraction
or aspect ratio, and the ratio of shear stress and pressure varies in a very narrow
range for all the values of area fraction and aspect ratio considered here. It is also
observed that σxy/p goes to zero as en → 1. This can be explained as follows. The
shear stress is the product of the viscosity and the strain rate, and the viscosity is
proportional to

√
T at fixed area fraction and aspect ratio. Therefore, the shear stress

is proportional to
√

T γ̇ . Since the pressure is proportional to T at fixed aspect ratio
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Figure 13. The ratio of shear stress and pressure (σxy/p) (a), and the quantity (σxy/(p(1−e2
n)))

(b), as a function of (1 − e2
n) for (L/D) = 0.0 (solid line), (L/D) = 0.25 (dashed line) and

(L/D) = 1.0 (dotted line), and for area fractions φ = 0.1 (�), φ = 0.3 (�), φ = 0.5 (�) and
φ = 0.7 (×).

and area fraction, the ratio of the shear stress and the pressure is proportional to
Dγ̇ /

√
T , which is proportional to

√
1 − e2

n from energy balance. Therefore, the ratio

of the shear stress and pressure is proportional to
√

1 − e2
n for en → 1. Figure 13(b)

shows σxy/(p
√

1 − e2
n). As expected on the basis of the above arguments, this ratio

approaches a constant value for en → 1, and it varies in a small range from about 0.6
to 0.8 for all area fractions in the range φ = 0.1 to φ = 0.7, and for all aspect ratios
considered here.

The first normal stress difference, (σxx − σyy)/p, shown as a function of (1 − e2
n)

for different aspect ratios and area fractions in figure 14(a), is positive for small area
fractions, and it is numerically large, indicating that the normal stresses in the flow
direction is significantly larger than the normal stress in the gradient direction at low
area fractions. As the area fraction increases, the normal stress difference becomes
numerically small, and it becomes negative for larger values of (L/D). The normal
stress difference decreases with an increase in area fraction because the collisional
mechanism of momentum transport becomes dominant, and this mechanism tends to
equalize velocity fluctuations in the different directions. An increase in aspect ratio
does result in an increase in the normal stress difference at low area fractions, but
this difference becomes smaller as the area fraction is increased. Therefore, for very
dense flows of aspherical granular materials, it is a good approximation to consider
the pressure to be isotropic. As the area fraction is reduced, an isotropic pressure is
not a good approximation for low coefficients of restitution.

An important issue for particles with a rotational degree for freedom is whether the
stress tensor is symmetric. This is examined in figure 14(b), where the difference in the
off-diagonal components (σxy − σyx), divided by the average value of the off-diagonal
components, (σxy + σyx)/2, is shown as a function of (1 − e2

n), for (L/D) = 1 and
for different area fractions. This figure shows that the difference in the off-diagonal
components is numerically small compared to the shear stress. For averages carried
out over 500 configurations with 216 particles each, we would expect a fluctuation of



494 K. A. Reddy, J. Talbot and V. Kumaran

0.2

0.4

0.6

0.8
((

σ
xx

 −
 σ

yy
)/

p)

(2
(σ

xy
 −

 σ
yx

)/
(σ

xy
 −

 σ
yx

))

–0.004

–0.002

0

0.002

0.004

0.10 0.2 0.3 0.4 0.5 0.6 0.7

(1 − e2
n)

0.10 0.2 0.3 0.4 0.5 0.6 0.7

(1 − e2
n)

(a) (b)

Figure 14. The first normal stress difference (σxx − σyy)/p (a), and the scaled antisymmetric

part of the rate of deformation tensor (2(σxy − σyx)/(σxy + σyx)) (b), as a function of (1 − e2
n)

for (L/D) = 1.0 (filled symbols) and (L/D) = 0.25 (open symbols), and for area fractions
φ = 0.1 (�), φ = 0.3 (�), φ = 0.5 (�) and φ = 0.7 (�).

about 0.3 % from the central limit theorem. The fluctuations in the antisymmetric part
of the rate of deformation tensor are well within this range, as shown in figure 14(b).
Therefore, we can conclude that the stress tensor is symmetric in our system. This
is expected, because we are considering a steady flow, and there are no microscopic
torques on the particles.

3.5. Dissipation rate

Since we are considering a steady flow, the rate of dissipation of energy is equal to µγ̇ 2,
where µ is the viscosity and γ̇ is the strain rate. It is appropriate to define a scaled rate
of dissipation of energy in the low-area-fraction limit as D′ = µγ̇ /(1− e2

n)φ
2T 3/2, since

the decrease in energy in a collision is proportional to (1 − e2
n) times the square of the

fluctuating velocity (T ), while the frequency of collisions per unit area is proportional
to φ2

√
T . In the limit of high area fractions, the scaled rate of dissipation of energy

per unit area can be defined as D′′ = µγ̇ /(1−e2
n)νT φ, since the frequency of collisions

is ν, while the energy dissipation in a collision is proportional to (1 − e2
n)

√
T . The

rate of dissipation of energy, non-dimensionalized in these two ways, is shown as a
function of (1 − e2

n) for different aspect ratios and area fractions in figure 15. It is
observed that there is a significant variation of the scaled dissipation rate D′ with
(1 − e2

n) and with area fraction over the range of area fractions considered here.
However, the scaled dissipation rate D′′ shows very little variation with area fraction
and coefficient of restitution, indicating that the collision frequency is the relevant
dynamical quantity that determines the dissipation rate in the system. The scaled
dissipation rate D′′ is nearly a constant for nearly elastic particles, but decreases
significantly as the coefficient of restitution decreases below about 0.8. In the case of
spherical particles, it has been reported (Kumaran 2009a,b) that there is a decrease
in the dissipation rate scaled by the collision frequency at high volume fractions
because of correlations in the velocities of colliding particles; due to correlations,
the relative velocity distribution is closer to an exponential distribution instead of a
Gaussian distribution for elastic particles. Though we have not explicitly calculated
the relative velocity distributions here, the graph of D′′ versus coefficient of restitution
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Figure 15. The scaled dissipation rate, D′ = (σxyγ̇ /((1 − e2
n)φ

2T 3/2)) (a), and D′′ = (σxyγ̇ /
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n) for (L/D) = 0.0 (dashed line), (L/D) = 0.25
(broken line) and (L/D) = 1.0 (solid line), and for area fractions φ = 0.1 (�), φ = 0.3 (�),
φ = 0.5 (�) and φ = 0.7 (×).

indicates that a similar phenomenon is present in the case of non-circular particles as
well.

3.6. Angular velocity

An important quantity of interest is the mean angular velocity of the particles.
Figure 14(b) shows that the stress tensor is always symmetric. In this case, continuum
Cosserat theories (Mitarai, Hayakawa & Nakanishi 2002; Mohan, Nott & Rao 2002)
predict that the rate of rotation of the individual particles has to be equal to the
rate of rotation of the material elements. This implies that the angular velocity of the
particles has to be equal to half the vorticity. If the angular velocity of the particles is
equal to the local mean rate of rotation of the fluid, then the mean particle angular
velocity has to be equal to half the local vorticity. In the present case, the mean
angular velocity of the particles should be equal to −0.5, because we have considered
the strain rate to be equal to 1 and anticlockwise rotation is considered positive. The
mean angular velocity across the channel is shown as a function of the coefficient
of restitution for (L/D) = 1 and for different area fractions in figure 16. Although
there are large error bars for en → 1 and for low area fractions, it is observed that
the mean angular velocity is close to −0.5, which is expected if the angular velocity
of the particles is equal to the mean rotation rate of the fluid. For highly inelastic
particles, the magnitude of the mean angular velocity even appears to increase above
0.5, though a definitive inference cannot be drawn due to the larger error bars at low
area fractions. However, at area fractions higher than about 0.4, it is clearly observed
that the magnitude of the mean angular velocity decreases below 0.5. This implies
that the rate of rotation of the particles is different from, and slower than, the mean
local rate of rotation of the fluid.

In figure 14(b), we find that the stress tensor is symmetric, and the antisymmetric
part of the stress tensor is equal to zero within the numerical accuracy of the
simulations. This implies that there is no local torque acting on the particles. Despite
this, the mean angular velocity of the particles is different from the mean rotation in
the fluid even when there is no torque on the particles. This indicates that the shear
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Figure 16. Mean angular velocity as a function of (1 − e2
n) for (L/D) = 1, and for

φ = 0.1 (�), φ = 0.3 (�), φ = 0.5 (�) and φ = 0.7 (×).

flow of inelastic dumbbells cannot be described by micro-polar theories for Cosserat
continua (Mitarai et al. 2002; Mohan et al. 2002). This is probably because there is
a distinct average orientation direction in the flow, which is the principal axis of the
orientation tensor for the dumbbells. This is probably because of steric hindrance
effects, which restrict rotational motion of the particles. However, these effects do not
reduce the angular velocity to zero; the angular velocity is still non-zero, but about
half the value expected if it were a Cosserat continuum.

4. Conclusions
We have studied the dynamics and structure of a system of inelastic dumbbells in

a linear shear flow using an ED simulation technique using Lees–Edwards boundary
conditions. The presence of the orientational degree of freedom makes the simulation
procedure considerably more complicated than is the case for spherical particles.
We use the method of retrospective collision detection. The collision between a pair
of dumbbells, which is instantaneous, is characterized by a normal coefficient of
restitution, en that is equal to 1 for elastic collisions and is less than 1 for inelastic
collisions. The relative velocity tangential to the surfaces of contact is unchanged in
a collision.

4.1. Granular temperature

In equilibrium systems, the velocity fluctuations in different degrees of freedom are,
by the equipartition theorem, equal. In inelastic systems, equipartition does not apply,
so it is necessary to consider a granular temperature for each degree of freedom. In
the two-dimensional dumbbell system, there are three temperatures: Tx, Ty and Tω,
corresponding to velocity fluctuations in the flow direction, the gradient direction
and the angular velocity, respectively. As expected, for nearly elastic particles the
three granular temperatures are almost equal. As the inelasticity increases we observe
that Tx > Ty >Tω. At high packing fractions, the difference between the energies
of translational and rotational motion is not more than 10 %, implying that the
approximation of assuming equipartition is reasonable. This is due to the greater
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collisional efficiency of the redistribution of energy between the different degrees
of freedom at higher packing fraction. We also observed that the overall granular
temperature, (Tx + Ty + Tω)/3, varies only slightly with the aspect ratio (L/D).

A surprising observation, which has the potential to simplify the development
of kinetic theories for non-spherical inelastic particles, is that the distributions of
translational and rotational velocities are all Gaussian to a very good approximation.

4.2. Stress and dissipation rate

The ratio of the pressure to the temperature, p/T , is nearly independent of the
coefficient of restitution, and shows some variations with the aspect ratio (L/D). This
is a significant result and it will be interesting to see if it extends to other types of
particles. Also significant is that the ratio p/(ν

√
T ) shows little variation over the

entire range of area fraction and coefficient of restitution studied here. Similarly, we
found that the scaling σxyγ̇ /((1 − e2

n)φνT ) for the scaled dissipation rate, appropriate
for high area fractions, results in a greater collapse of the data than the scaling
σxyγ̇ /((1 − e2

n)φ
2T 3/2) (appropriate in the low packing fraction limit). This indicates

that collisional transport is the dominant mechanism of stress transmission, even at
the lowest area fraction.

The collision frequency, pressure and shear stress all increase as the aspect ratio
(L/D) is increased form 0.0 to 1.0. However, the maximum increase in the collision
frequency is about a factor of 2 at the highest area fraction of 0.7, while the increase
in the pressure and stress is smaller. This is in contrast to the increase of an order
of magnitude or more when the volume fraction is increased from 0.1 to 0.7. This
leads us to the conclusion that an accurate modelling of the shape of the particles is
important for predicting the stresses, but approximate estimates can be obtained using
theories for isotropic particles; the volume fraction seems to have a much greater
influence on the stresses than the shape.

4.3. Mean angular velocity

Unlike the density, mean velocity and the stress, the mean angular velocity displays
significant fluctuations across the channel. This may be due to long-lived correlations
in the particle rotation rate, which requires further study. Despite the large error
bars, however, some clear trends were visible. The mean angular velocity is equal
to −0.5 for low area fraction and coefficients of restitution close to 1. This is the
expected result if the particle angular velocity is equal to the local rate of rotation of
the fluid. At higher packing fraction, however, the mean angular velocity is less than
half the local vorticity. This indicates that the flow of anisotropic particles cannot
be described by micro-polar theories for Coserrat continua, and it is necessary to
incorporate particle orientation as a separate field.

This research was supported by the J. C. Bose Fellowship, Department of Science
and Technology, Government of India. Support in the form of a visiting Professor
position for J. T. at the Indian Institute of Science is gratefully acknowledged.

REFERENCES

Allen, M. P., Frenkel, D. & Talbot, J. 1989 Molecular dynamics simulation using hard particles.
Comput. Phys. Rep. 9, 301.

Aranson, I. S., Snezhko, A., Olafsen, J. S. & Urbach, J. S. 2008 Comment on ‘Long-Lived Giant
Number Fluctuations in a Swarming Granular Nematic’. Science 320, 612c.

Bertrand, F., Leclaire, L. A. & Levecque, G. 2005 DEM-based models for the mixing of granular
materials. Chem. Engng Sci. 60, 2517–2531.



498 K. A. Reddy, J. Talbot and V. Kumaran

Blair, D. L., Neicu, T. & Kudrolli, A. 2003 Vortices in vibrated granular rods. Phys. Rev. E 67,
031303–031308.

Cleary, P. W. 2008 The effect of particle shape on simple shear flows. Powder Technol. 179, 144–180.

Cleary, P. W. & Sawley, O. D. L. 2002 DEM modelling of industrial granular flows: 3D case
studies and the effect of particle shape on hopper discharge. Appl. Math. Model. 26, 85–111.

Cole, D. M. & Peters, J. F. 2007 A physically based approach to granular media mechanics: grain-
scale experiments, initial results and implications to numerical modeling. Granular Matter 9,
309–321.

Cole, D. M. & Peters, J. F. 2008 Grain-scale mechanics of geologic materials and lunar simulants
under normal loading. Granular Matter 10, 171–185.

Cundall, P. A. & Strack, O. D. L. 1979 A discrete numerical model for granular assemblies.
Geotechnique 29, 47–65.

Galanis, J., Harries, D., Sackett, D. L., Losert, W. & Nossal, R. 2006 Phys. Rev. Lett. 96, 028002.

Gallas, J. A. C. & Sokolowski, S. 1993 Grain non-sphericity effects on the angle of repose in a
granular material. Intl J. Mod. Phys. B 7, 2037–2046.

Kumaran, V. 2004 Constitutive relations and linear stability of a sheared granular flow. J. Fluid
Mech. 506, 1–43.

Kumaran, V. 2006 The constitutive relations for the granular flow of rough particles, and its
application to the flow down an inclined plane. J. Fluid Mech. 561, 1–42.

Kumaran, V. 2008 Dense granular flow down an inclined plane – from kinetic theory to granular
dynamics. J. Fluid Mech. 599, 120–168.

Kumaran, V. 2009a Dense sheared granular flows. Part I. Structure and diffusion. J. Fluid Mech.
632, 109–144.

Kumaran, V. 2009b Dense sheared granular flows. Part II. The relative velocity distribution. J. Fluid
Mech. 632, 145–198.

Langston, P. A., Al-Awamleh, M. A., Fraige, F. Y. & Asmar, B. M. 2004 Distinct element
modelling of non-spherical frictionless particle flow. Chem. Engng Sci. 59, 425–435.

Lees, A. W. & Edwards, S. F. 1972 J. Phys. C 5, 1921.

Lumay, G. & Vandewalle, N. 2004 Compaction of anisotropic granular materials: Experiments
and simulations. Phys. Rev. E 70, 051314.

Matuttis, H. G. 1998 Simulations of the pressure distribution under a two dimensional heap of
polygonal particles. Granular Matter 1, 83–91.

Mitarai, N., Hayakawa, H. & Nakanishi, H. 2002 Collisional Granular flow as a Micropolar fluid.
Phys. Rev. Lett. 88, 174–301.

Mohan, L. S., Nott, P. R. & Rao, K. K. 2002 A frictional Cosserat model for the slow shearing of
granular materials. J. Fluid Mech. 457, 377–409.

Narayan, V., Ramaswamy, S. & Menon, N. 2007 Science 317, 105.

Pena, A. A., Garcia-Rojo, R. & Herrmann, H. J. 2007 Influence of particle shape on sheared
dense granular media Granular Matter 9, 279–291.

Poschel, T. & Buchholtz, V. 1995 Molecular dynamics of arbitrarily shaped granular particles.
J. Phys. France 5, 1431–1445.

Rebertus, W. & Sando, K. M. 1977 Molecular dynamics simulation of a fluid of hard
spherocylinders. J. Chem. Phys. 67, 2585–2590.

Reddy, K. A., Kumaran, V. & Talbot, J. 2009 Orientational ordering in sheared inelastic dumbbells.
Phys. Rev. E 80, 031304.

Stokely, K., Diacou, A. & Franklin, S. V. 2003 Two-dimensional packing in prolate granular
materials. Phys. Rev. E 67, 051302.

Villarruel, F., Lauderdale, B., Mueth, D. M. & Jaeger, H. M. 2000 Compaction of rods:
relaxation and ordering in vibrated, anisotropic granular material. Phys. Rev. E 61, 6914–
6919.

Zhu, H. P., Zhou, Z. Y., Yang, R. Y. & Yu, A. B. 2007 Discrete particle simulation of particulate
systems: theoretical developments. Chem. Engng Sci. 62, 3378–3396.


